¢ <

IS
Automated Analysis of Halo2 &
Circuits &

Fatemeh Heidari Soureshjani Quantstamp & Polytechnique Montreal, Canada @‘

8
Q]

Mathias Hall-Andersen Aarhus University, Denmark

Mohammad Mahdi Jahanara Quantstamp

Jeffrey Kam Quantstamp

Jan Gorzny Quantstamp @

Mohsen Ahmadvand Quantstamp ﬁ‘ﬁ
&}

21st International Workshop on Satisfiability Modulo Theories, Italy

Plan

1. Introduction: Zero-Knowledge
Proofs, Halo2, and Related Work

2. Abstract Interpretation Approach:
Introduction & Use

3. SMT Approach: Use

4. Conclusion: Summary & Future Work

Plan

1. Introduction: Zero-Knowledge
Proofs, Halo2, and Related Work

Zero-Knowledge Proofs
n ‘ Automated Analysis of Halo2

Circuits

Introduced by Goldwasser et al. 1989
Prove that you know something without revealing it.

“For function fand public input x, | know a private witness w
such that f(x,w) = y”

zk-SNARK

Zero-Knowledge Succinct Non-interactive Argument of Knowledge

ZK DSLs & PLONK
n ‘ Automated Analysis of Halo2

Circuits

e Some ZK DSLs and frameworks exist
o Circom (Bellés-Munoz et al. 2022)

o ZoKrates (Eberhardt and Tai 2018)
o Halo2 (ZCash; no paper yet?)

e Under the hood, they typically compile to one of the following
constraint systems:
o Rank 1 Constraint System (R1CS)
m Groth16 (Groth 2016)

o PLONK:Iish arithmetic

m PLONK (Gabizon and Williamson 2019)
TurboPLONK (Gabizon and Williamson 2019)
plookup (Gabizon and Williamson 2020)
UltraPLONK (Aztec 2021; no paper yet?)
HyperPLONK (Chen et al. 2022) 5

Circuits

Halo2
n ‘ Automated Analysis of Halo2

e Popular zero-knowledge proof system library in Rust
e Uses PLONKIish arithmetization to express circuits: circuits are
tables, and we add constraints over the table

Verifier + Prover Prover Verifier + Prover
(input) (witness) (constant)
Selector (s) Instance (b) Advice (a) Fixed (C)

row i

Shaded area is aregion and
a gate
Si (C, . bi-a,') =0 (entire row in this example)

+ Constraints:

f((a,b,C),s)=s(C-a-Db)

Vanishing Polynomials

Automated Analysis of Halo2
Circuits

Verifier + Prover Prover Verifier + Prover
(input) (witness) (constant)
Selector (s) Instance (b) Advice (a) Fixed (C)
row i 1 15 5 83

+ Constraints:

s.(C.-b-a)=0

A polynomial vanishes if it evaluates to O over all rows. All polynomial

constraints in a Halo2 proof system should vanish over all rows for a valid
witness and public input pair.

Do this by either
® setting the irrelevant selector variables to 0, or

e providing (possibly secret) assignments to the table cells that result in the
polynomial’s evaluation to O.

ZK Problems

Automated Analysis of Halo2
Circuits

ZK Bug Tracker https:/igithub.com/0xPARC/zk-bug-tracker

A community-maintained collection of bugs, vulnerabilities, and exploits in apps using ZK crypto.

Bugs in the Wild

0 N O O » W N =

= =
B W N = O

. Dark Forest v0.3: Missing Bit Length Check

Bigint: Missing Bit Length Check

. Circom-Pairing: Missing Output Check Constraint
. Semaphore: Missing Smart Contract Range Check
. Zk-Kit: Missing Smart Contract Range Check

. Aztec 2.0: Missing Bit Length Check / Nondeterministic Nullifier
. OXPARC StealthDrop: Nondeterministic Nullifier

. MACI 1.0: Under-constrained Circuit

. Bulletproofs Paper: Frozen Heart

. PlonK: Frozen Heart

. Zcash: Trusted Setup Leak

. MiIMC Hash: Assigned but not Constrained

. PSE & Scroll zkEVM: Missing Overflow Constraint
. PSE & Scroll zkEVM: Missing Constraint

Common Vulnerabilities

00 N O O BB WO N =

. Under-constrained Circuits

. Nondeterministic Circuits

. Arithmetic Over/Under Flows

. Mismatching Bit Lengths

. Unused Public Inputs Optimized Out

. Frozen Heart: Forging of Zero Knowledge Proofs
. Trusted Setup Leak

. Assigned but not Constrained

This Work
n ‘ Automated Analysis of Halo2

Circuits

e Wedescribe a Proof-of-Concept / Work-In-Progress tool for analysis of
Halo2 circuits in Rust

e Analyses for the following issues:
o Underconstrained circuits
m Assigned but unconstrained cells (abstract interpretation)
m Multiple assignments to witnhesses for a public input (SMT)
o Unused custom gates (abstract interpretation)
o Unused columns (abstract interpretation)

Download it here! \

https://github.com/quantstamp/halo2-analyzer

Related Work

Automated Analysis of Halo2
Circuits

e Picus (https://github.com/chyanju/Picus)
o Uses symbolic execution

o Supports custom queries / property checking
o Automated verification Picus is a symbolic virtual machine for automated verification tasks on R1CS.

... but for R1CS

e Ecne (https://github.com/franklynwang/EcneProject) Ecne (R1CSConstraintSolver.jl)
o Fixed-point algorithm

o Needsrules to be specified

’ Picus

Introduction

zk-SNARKSs are a method for generating zero-knowledge proofs of arbitrary functions, as long as these functions

can be expressed as the result of a R1CS (a rank-one constraint system). However, one still needs to convert
... but also for R1CS N . . .) .
functions into R1CS form. As this is a laborious process (though still far easier than starting from scratch), Ecne,

e QED? (Pailoor et al., 2023) Automated Detection of Under-Constrained Circuits in Zero-
Knowledge Proofs

o SMT-based approach
o “uniqueness inference”

Yu Feng, Isil Dillig Authors Info & Claims

... but for Circom (R1CS)

10

Plan

2. Abstract Interpretation Approach:

Introduction & Use

Abstract Interpretation & Halo2

oy

Uses Abstract Interpretation (Cousot & Cousot, 1976)

Approximation of programs via “partial execution”: some calculations
are performed, but others are not.

For Halo2: partially execute the polynomials, using abstract values.
e Trytodetermine if some polynomials are always non-zero; then
they would not vanish!

Automated Analysis of Halo2
Circuits

12

Abstract Interpretation & Halo2

oy

Create a new enum that represents a polynomial’s value which is
either:

o Something (probably depending on the witness)

o Definitely not zero (for any witness)

o Definitely zero (for any witness)

Then “partially execute”: add, multiply, subtract values and get some
inference (e.g. 0+0=0). Example of adding values below.

Expression::Sum(left, right) => {

let resl = eval_abstract(left, selectors);

let res2 = eval_abstract(right, selectors);

match (resl, res2) {
(AbsResult::Variable, _) => AbsResult::Variable, // could be anything
(_, AbsResult::Variable) => AbsResult::Variable, // could be anything
(AbsResult::NonZero, AbsResult::NonZero) => AbsResult::Variable, // could be zero or non-zero
(AbsResult::Zero, AbsResult::Zero) => AbsResult::Zero,
(AbsResult::Zero, AbsResult::NonZero) => AbsResult::NonZero,
(AbsResult::NonZero, AbsResult::Zero) => AbsResult::NonZero,

Automated Analysis of Halo2

Circuits

13

Abstract Interpretation & Halo2

oy

No witness is provided; we can't evaluate the gate polynomials, but
we can evaluate polynomials in regions for concrete values of selector

variables and constant variables

So we can get checks for:
e Unused Gates: for every gate there exists a region in which it is not

always zero

e Unconstrained Cells: for every assigned cell in the region, it occurs
in a polynomial which is not identically zero over this region

e Unused Column: every column occurs in some polynomial

May vield false negatives: may return that a polynomial is not
identically zero, when infactitis

Automated Analysis of Halo2

Circuits

14

Plan

3. SMT Approach: Use

Under-Constrained Circuits

Automated Analysis of Halo2
Circuits

A Plonkish circuit C is under-constrained if there exists an
assignment x to Instance columns of C, and two set of
assignments w and w'for its Advice columns, where both
{x, w} and {x, w'} satisfy constraints of C.

16

Over-Constrained Circuits

oy

A Plonkish circuit C is over-constrained-if for some
assignment x to instance columns of C, no assignments to
the advice columns of C enable the system to have a
solution, but the developer expects there to be one.

Example. Consider a circuit that states that for any
positive integer x as input, there are two (distinct) advice
columns entries that are positive integer and add up to x.
o forx>2 ¥
o forx=1 X
It would not be meaningful to call the circuit
over-constrained for this input value.

Automated Analysis of Halo2
Circuits

17

Circuits

Halo2 to SMT
n ‘ Automated Analysis of Halo2

We convert from Rust to SMTLIB and add constraints as

a conjunction.

e For gate constraints, we add a constraint that the
polynomial is equal to zero

(add(x) =0)

ab,c’ 7a’'b'c
e For copy constraints, we add a constraint that the
variables are equal

(Xa,b,c - a’,b’,c’)
e For lookup constraints, we add a constraint that a
disjunction enforcing that a variable is equal to one of
the legal values

(x , =v.V Xope = Vs V..V Xobe™ v,) 6

a,b,c

Circuits

Halo2 to SMT
n ‘ Automated Analysis of Halo2

We use CVC5 (Barbosa et al. 2022) since there is a finite
field solver for it (Ozdemir et al. 2023).

1 (set-logic QF FF)
2 (declare-fun A-1-1-1 () (_ FiniteField 307))
3 (assert (= A-1-1-1 (as ff0 (_ FiniteField 307)))

19

Analysis Logic

Extract

Polynomials

mmmma Build Z3 Solver

Add new
constraints

Under-
constrained

Automated Analysis of Halo2
Circuits

Over-
constrained

Not under-
constrained

20

Under-Constrained

Circuits Example

Motivating Example

Gate for x in [0,3]

Advice
variables

Constraints:

(b0-1) -0

b, + 2'b,

Ensures binary values

>

|
o

- X is in the desired range

Instance
Variable

oy

Automated Analysis of Halo2

Circuits

22

Motivating Example

meta.create_gate("b1_binary_check", [meta| {

let a = meta.query_advice(b1, Rotation::cur());

let dummy = meta.query_selector(s);

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
// a*(1-a)
hE

oy

Automated Analysis of Halo2

Circuits

23

Motivating Example

meta.create_gate("bl1_binary_check", |metal {

let a = meta.query_advice(b1, Rotation::cur());

let dummy = meta.query_selector(s);

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
//a*(1-a)
hE

meta.create_gate("bO_binary_check", [meta| {

let a = meta.query_advice(b1, Rotation::cur());

let dummy = meta.query_selector(s);

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
// a*(1-a)
hE

oy

Automated Analysis of Halo2
Circuits

24

Motivating Example

meta.create_gate("bl1_binary_check", |metal {

let a = meta.query_advice(b1, Rotation::cur());

let dummy = meta.query_selector(s);

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
//a*(1-a)
hE

meta.create_gate("bO_binary_check", [metal {

let a = meta.query_advice(b1, Rotation::cur());

let dummy = meta.query_selector(s);

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
//a*(1-a)
D;

meta.create_gate("equality", [meta| {
let a = meta.query_advice(bO, Rotation::cur());
let b = meta.query_advice(b1, Rotation::cur());
let c = meta.query_advice(x, Rotation::cur());
// we'll copy public instance here later using constrain_instance
let dummy = meta.query_selector(s);
vec![dummy * (a + Expression::Constant(Fr::from(2)) * b - ¢)]

);

oy

Automated Analysis of Halo2

Circuits

25

Motivating Example Results

b0 -> 1
bl > 1
x -> 3

equivalent model with same public input:

b0 -> 3
bl -> 0
x -> 3
Result:

The circuit i1is underConstrained.

e Takes < 1sto run on this example (no surprise)

e Push-button -- no additional property description necessary to
write; but you could add more

oy

Automated Analysis of Halo2

Circuits

26

Motivating Example

meta.create_gate("bl1_binary_check", |metal {

let a = meta.query_advice(b1, Rotation::cur());

let dummy = meta.query_selector(s);

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
//a*(1-a)

B Copy and paste error!

meta.create_gate("bO_bigary _chefk", |[metal {
let a = meta.query_advike(, Rogation::cur());

vec![dummy * a.clone() * (Expression::Constant(Fr::from(1)) - a.clone())]
//a*(1-a)
D;

meta.create_gate("equality", [meta| {
let a = meta.query_advice(bO, Rotation::cur());
let b = meta.query_advice(b1, Rotation::cur());
let c = meta.query_advice(x, Rotation::cur());
// we'll copy public instance here later using constrain_instance
let dummy = meta.query_selector(s);
vec![dummy * (a + Expression::Constant(Fr::from(2)) * b - ¢)]

);

oy

Automated Analysis of Halo2

Circuits

27

Plan

4. Conclusion: Summary & Future Work

Conclusion

oy

e \We have shown an approach to use abstract interpretation to
find assigned but unconstrained cells, unused custom gates,
and unused columns in Halo2

e \We have shown how SMT solvers can be used to find under-
and over-constrained Halo2 circuits

Download it here! \

https://github.com/quantstamp/halo2-analyzer

Automated Analysis of Halo2
Circuits

AL

Future work is needed!
o Limitations not yet known - no readily available corpus of circuits
to test scaling on; conversion, curation, or building hecessary
o More analyses for other types of bugs and issues within Halo2
circuits; best practices?
o Comparison with, combination of, or inspiration from other
approaches

time (ms) time (ms) time (ms)

18.940541 71.075625 730.086875

28.063583 161.558958 4478.517416
36.888

Table 4
Run times for the analysis in Section 3.2 on generalized circuits of Example 3.1.

https://github.com/quantstamp/halo2-analyzer

Future Work
Automated Analysis of Halo2
Circuits

30

Thank you for listening!

® @igorzny
- @jgorzny

‘ jan@quantstamp.com
‘ @quantstamp

Download it here! \

https://github.com/quantstamp/halo2-analyzer

