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Introduction

Decentralized Finance (“DeFi”; see e.g., [2]) is a major use case of general purpose blockchains like

Ethereum. DeFi refers to financial services implemented as decentralizedApplications (“dApps”) on

these blockchains. They use on-chain assets for a myriad of purposes, including market making,

loan issuance, and stablecoins. These use cases mean that DeFi protocols handle billions of

dollars of cryptocurrency, which in turn makes them an attractive target for exploitation [5].

In [1], the authors argue that preventing withdrawals after deposits in DeFi protocols may have

safeguarded millions of dollars in cryptocurrency. Enforcing a suitable delay of more than one

block or a non-zero amount of time (according to the block timestamps), can outright prevent so-

called flash loan attacks (see e.g. [4]) by making such a loan too expensive. Despite this benefit,

this delay may be undesirable. One reason for this is that it may break composability, a defining

characteristic of DeFi protocols [3]: the ability to build DeFi protocols on top of other ones.

Other reasons may include the introduction of a more restrictive user experience (especially

with a poorly chosen delay) and the increase of on-chain gas costs.

Contributions. We analyse public blockchain data to determine the minimum, maximum, and av-

erage duration (in blocks) between a call to a deposit function and a corresponding withdrawal

function for various DeFi protocols on Ethereum. This results in a first step towards understand-

ing if delays really break composability or should be considered for additional security. We show

that for some well-used protocols, a mandatory delay between deposits and withdrawals would

not negatively affect user experience.

Measured Values

The values we want to measure are illustrated

in the figure to the right.

Let Xp be the set of addresses on Ethereum that call a withdrawal or deposit function on a

contract ρ in the block range [MIN, MAX ]. We also count the total number of transactions
calling either a deposit function dρ, withdrawal wρ, and the total tρ. Let δ

(i,x)
ρ be the ith delay

between a deposit and subsequent withdrawal for a protocol ρ for an address (user) x counted
in blocks. We want δρ: the minimum observed delay between deposits and withdrawals for a

protocol ρ, which is δρ = minx,i δ
(i,x)
ρ . We also collect the maximum observed delay (∆ρ) as well

as the average aρ delay in blocks.

Dataset

We chose three DeFi protocols to analyse: Curve, Sturdy, and Yearn.

Curve Vyper contracts; chose the one highlighted in post-mortem.

Sturdy Solidity contracts; chose the main proxy contract highlighted in a post-mortem

where 513WETH was borrowed.
Yearn Vyper contracts; chose the proxy contracts of the DAI and WETH V2 pools. These

were the top two V2 Yearn lending pools with the most Total Value Locked (TVL) at the

time of writing ($17M and $61M USD respectively)

These protocols were exploited in 2023 andwere the only protocols in [1] on Ethereummainnet.

Data was collected from blockMIN = 16308190 (Jan-01-2023 12:00:11 AM +UTC) toMAX =
17595510 (Jul-01-2023 12:00:11 AM +UTC); after contracts were deployed but before theywere
exploited. This represents the first six months of blocks (1287320 blocks) on Ethereum in 2023
We identified functions on each contract that allow users to deposit and withdraw functions.

These functions and the contract addresses are in Table 1.

Discussion

Table 1 displays the data collected. Observe that most contracts have a relatively small amount

of deposits and withdrawals, suggesting that most interactions actually happen through indirect

calls. The average deposit values aρ are rounded to the nearest integer but are always large: the

average deposit formost users is at least 432, 472 blocks for all protocols (≈ 60 days). A key finding
is that the smallest gap is 4 blocks: meaning that any restriction to prevent a flash loan within a
single transaction will not affect users who interact with these protocols via these function calls.

Results

Protocol Deposit Functions Withdrawal Functions tρ dρ wρ aρ δρ ∆ρ |Xp|
ρ (Selector(s)) (Selector(s))

Curve add_liquidity remove_liquidity 1505 967 538 548160 4 1287105 806

0x8301AE4fc9c624d1D396cbDAa1ed877821D7C511 (0x0b4c7e4d, 0xee22be23) (0x5b36389c, 0x269b5581)
remove_liquidity_one_coin
(0xf1dc3cc9, 0x8f15b6b5)

Sturdy deposit (0xe8eda9df) withdraw (0x69328dec) 187 104 83 432472 18 1152668 93

0x9f72DC67ceC672bB99e3d02CbEA0a21536a2b657 depositYield (0xd6996185) withdrawFrom (0x12ade5ad)

Yearn V2 DAI deposit withdraw 322 10 312 503000 1081 1271917 226

0xdA816459F1AB5631232FE5e97a05BBBb94970c95 (0xd0e30db0, (0x3ccfd60b, 0x2e1a7d4d
Yearn V2 WETH 0xb6b55f25) 0x00f714ce, 0xe63697c8) 341 5 336 548424 26 1277893 266

0xa258C4606Ca8206D8aA700cE2143D7db854D168c

Table 1. Deposit delay statistics for the protocols studied in this work. For each protocol, we list the address of the Ethereum smart contract that has the corresponding deposit and withdrawal

functions implemented. Each function is listed with its function selector (and may have multiple if the function name is overloaded).

Charts

(a) Box-whisker plot for withdrawal delay on the studied protocols.

(b) Bar chart for the number of transactions targeting the protocol smart contracts.

Most have roughly the same number of withdrawals as deposits.

Figure 1. Visualization of findings.

Discussion (Continued)

Figure 1a shows the distribution of the delays in a box-whisker plot. The middle line in the box

shows the median delay, while the middle text shows the mean delay. The upper and lower

lines are the upper and lower extremes, respectively, and the box indicates the upper and lower

quartile for delays. Most delays are around the median and mean; most users leave funds in for

several days if not several weeks for these protocols.

Figure 1b visualizes the number of deposits, withdrawals, and other transactions. It is clear that

both Yearn pools, and Curve, are more popular than Sturdy during the studied time period. Most

protocols have roughly the same amount of deposits as withdrawals, though there are many

other calls to Curve.

Threats to Validity

Incomplete data. The work does not analyze the entire history of the blockchain, so some

recorded gaps may be underestimated. Moreover, protocols may have funds deposited or

withdrawn through intermediate smart contracts; these transactions are not included.

Imprecise deposit and withdrawal pairs. The data was collected such that a user could

deposit via any of the protocol’s listed deposit functions and withdraw via any listed

withdrawal function; this may not be accurate. There are also cases where a user

withdraws someone else’s deposit which are excluded.

Conclusion

We studied the delays between withdrawals and deposits for four Ethereum DeFi protocols.

These were chosen because they suffered exploitation last year, and we studied the deposits

andwithdrawals of these protocols prior to their exploitation. Our data suggests that a manda-

tory delay between deposits and withdrawals would not have negatively affected users who

interact directlywith these protocols but such delays may have prevented exploitation of these

protocols. Our work does not capture the full picture and future work is necessary to counter

the threats to validity we outlined. Nonetheless, we stress that mandatory delays are a pow-

erful tool in protecting protocol funds that developers should consider using.
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