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Introduction

I As the ability of automated deduction has improved, it has been
applied to new application domains; e.g. Furbach et al. [2] used
it in natural language reasoning.

I Resolution proof production is a key feature of modern theorem
provers; the best, most-efficient provers do not necessarily
generate the best, least redundant proofs.

I For proofs using propositional resolution generated by SAT- and
SMT-solvers, there are many proof compression techniques.

I One approach to compressing first-order logic proofs is to lift
ideas used in propositional logic.

Propositional RecyclePivotsWithIntersection [1]

I Traverse a proof from the bottom up: store for every node a set
of safe literals: literals resolved in all paths below the node

I For any node whose resolved literals are safe, replace it with one
of its parents (regularizing it.)

The set of safe literals for a node η will be denoted S(η).

A Propositional Example
Consider the proof ψ shown below:

η1
η2 : a, c,¬b

η1 : ¬a η3 : a, b
a

η4 : b
bη5 : a, c

aη6 : c

η4 η7 : a,¬b,¬c
bη8 : a,¬c η1 aη9 : ¬c
c

ψ : ⊥
The algorithm RPI assigns S(η5) ← {a, c}, S(η8) ← {a,¬c},
and S(η4)← {a, c, b}∩{a,¬c, b} = {a, b}. Since a ∈ S(η4)
where a is a pivot of η4, η4 is detected as a redundant node and
regularalized by replacing it by its right parent η3:

η1 : ¬a
η2 : a, c,¬b η3 : a, b

η5 : a, c
η6 : c

η3 η7 : a,¬c,¬b
η8 : a,¬c η1

η9 : ¬c
ψ : ⊥

A First-Order Example

Consider the proof ψ below. When computed as in the propositional
case, S(η3)← {` q(c), p(a,X)}

η1: ` p(W,X) η2: p(W,X) ` q(c)
η3: ` q(c) η4: q(c) ` p(a,X)

η5: ` p(a,X) η6: p(Y, b) `
ψ: ⊥

Since p(W,X) 6= p(a,X), propositional RPI algorithm would not
change ψ. However, η3’s left pivot p(W,X) ∈ η1 is unifiable with
the safe literal p(a,X). Regularizing η3, by deleting the edge between
η2 and η3 and replacing η3 by η1, leads to further deletion of η4
(because it is not resolvable with η1) and finally to the following proof:

η1: ` p(W,X) η6: p(Y, b) `
ψ′: ⊥

Unifiability is Not Enough

Consider ψ below. When computed as in the propositional case,
S(η3) ← {` q(c), p(a,X)}, and as the pivot p(a, c) is unifi-
able with the safe literal p(a,X), η3 appears to be a candidate for
regularization.

η1: ` p(a, c) η2: p(a, c) ` q(c)
η3: ` q(c) η4: q(c) ` p(a,X)

η5: ` p(a,X) η6: p(Y, b) `
ψ: ⊥

However, if we attempt to regularize the proof, the same series of
actions as in the last example would require resolution between η1 and
η6, which is not possible.

Pre-Regularization Unifiability

Let η be a node with pivot `′ unifiable with safe literal ` which is
resolved against literals `1, . . . , `n in a proof ψ. η is said to satisfy
the pre-regularization unifiability property in ψ if `1,. . . ,`n, and `′ are
unifiable.

Pre-Regularization Unifiability: Still Not Enough

Consider the proof ψ below. After collecting the safe literals,
S(η3)← {q(T, V ), p(c, d) ` q(f(a, e), c)}.

η8: q(f(a, e), c) `
η6: ` p(c, d)

η1: p(U, V ) ` q(f(a, V ), U) η2: q(f(a,X), Y ), q(T,X) ` q(f(a, Z), Y )
η3: p(U, V ), Q(T, V ) ` q(f(a, Z), U) η4: ` q(R,S)

η5: p(U, V ) ` q(f(a, Z), U)
η7: ` q(f(a, Z), c)

ψ: ⊥

η3’s pivot q(f(a, V ), U) is unifiable to (and even more general than)
the safe literal q(f(a, e), c). Attempting to regularize η3 would lead
to the removal of η2, the replacement of η3 by η1 and the removal of
η4 (because η1 does not contain the pivot required by η5), with η5
also being replaced by η1. Then resolution between η1 and η6 results
in η′7, which cannot be resolved with η8, as shown below.

η8: Q(f(a, e), c) `
η6: ` P (c, d) η1: P (U, V ) ` Q(f(a, V ), U)

η′7: ` Q(f(a, d), c)
ψ′: ??

η1’s literal q(f(a, V ), U), which would be resolved with η8’s literal,
was changed to Q(f(a, d), c) due to resolution between η1 and η6.

Regularization Unifiability

Let η be a node with safe literals φ that is marked for regularization
with parents η1 and η2, where η2 is marked as a deletedNode in a
proof ψ. η is said to satisfy the regularization unifiability property in
ψ if there exists a substitution σ such that η1σ ⊆ φ.

The First-Order Algorithm

I Similar idea to the propositional case, but with care taken to
ensure proofs satisfy the last two properties.

I First order factoring also employed to reduce proof size further,
e.g. if η1 : p(X), p(Y ) `, factor to η′1 : p(X) ` before
performing resolution.

I Intersection of safe literals must also employ unification.

I Does not compress all first-order proofs (yet).

Preliminary Results
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I First-order proofs generated by SPASS
show some compression by Scala based
implementation.

I Data set is small: only 308 proofs, all of
which are short

I Evaluation with GFOLU [3], a first-order
variant of LowerUnits, another
propositional compression algorithm
lifted to first-order logic.
I Recycle pivots compresses 10x more than

lower units in the propositional case

I Algorithm composition may matter less
in the first-order case when compared to
the propositional case.

I Quick compression: 40 minutes to
generate all proofs, 8 seconds to
compress all proofs.

Future Directions

I Larger evaluation - more proofs, bigger proofs

I Identify properties that would enable all irregular first-order
proofs to be compressed

I Is it possible to lift other propositional proof compression
techniques to firs-order logic?
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