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Introduction

As the ability of automated deduction has improved, it has been
applied to new application domains; e.g. Furbach et al. [2] used
it in natural language reasoning.

Resolution proof production is a key feature of modern theorem
orovers; the best, most-efficient provers do not necessarily
generate the best, least redundant proofs.

For proofs using propositional resolution generated by SAT- and
SMT-solvers, there are many proof compression techniques.

One approach to compressing first-order logic proofs is to lift
ideas used in propositional logic.

Propositional RecyclePivotsWithlIntersection [1]

Traverse a proof from the bottom up: store for every node a set
of safe literals: literals resolved in all paths below the node

For any node whose resolved literals are safe, replace it with one
of its parents (regularizing it.)
he set of safe literals for a node 1 will be denoted S(n).

A Propositional Example
Consider the proof 1 shown below:

m : —a 773:a7ba
M2 : a,c, b 774:bb T4 777:a7_'b7_'cb
Uil ns :a,c s - @, 7C m ,
Me - C Mo : —C .
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The algorithm RPI assigns S(n5) < {a,c}, S(ns) «— {a, c},
and S(n4) < {a,c,b}Nn{a,—c,b} = {a,b}. Sincea € S(ny)
where a is a pivot of 714, M4 is detected as a redundant node and
regularalized by replacing it by its right parent n13:

2 - a,C, —b n3 - a, b n3 17 - a, 1C, —b
- 7a s - a, C Ns - @, 1C T
M6 - C Tlg + TC
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A First-Order Example

Consider the proof 1 below. When computed as in the propositional

case, S(n3) «+— {F q(c), p(a, X)}

n: Fp(W,X) na: p(W,X) F q(c)
ns: + gq(c) n4: q(c) + p(a, X)
ns: - p(a, X)
P: L

Since p(W, X') # p(a, X), propositional RPI algorithm would not
change 1. However, n3's left pivot p(W, X) € my is unifiable with
the safe literal p(a, X'). Regularizing 13, by deleting the edge between
72 and 73 and replacing m3 by 7171, leads to further deletion of 74
(because it is not resolvable with 77;) and finally to the following proof:

m: Fp(W,X) ne p(Y,b) -
P’ L

Te: p(Ya b) -

Unifiability is Not Enough

Consider 1 below. When computed as in the propositional case,
S(n3) < {+F q(c¢), p(a, X)}, and as the pivot p(a, c) is unifi-
able with the safe literal p(a, X), 13 appears to be a candidate for
regularization.

n: Fp(a,c) n2: p(a,c) F q(c)
ns: k- q(c)

ns: q(c) = p(a, X)
5. F p(a, X)
Y. L

However, if we attempt to regularize the proof, the same series of
actions as in the last example would require resolution between 17; and
N¢, Which is not possible.

Te- p(Ya b) -

Pre-Regularization Unifiability

Let i be a node with pivot £’ unifiable with safe literal £ which is
resolved against literals £, ..., £, in a proof ¥. 7 is said to satisty
the pre-regularization unifiability property in ¢ if £4,... .4, and £’ are
unifiable.

Pre-Regularization Unifiability: Still Not Enough

Consider the proof 1) below. After collecting the safe literals,
S(ns) < {q(T,V),p(c,d) - q(f(a,e),c)}.

mn: p(U, V) = Q(f(aa V)aU) n2: Q(f(aaX)aY)9Q(T9X) - Q(f(aa Z)9Y)

ns: p(U, V), Q(T, V) q(f(a,Z),U) Ny Fq(R,S)

ne: F p(c,d) ns: p(U, V) t q(f(a, Z2),U)
T nr: = q(f(a,Z),c)
n3's pivot g(f(a, V'), U) is unifiable to (and even more general than)
the safe literal g(f(a, e), c). Attempting to regularize 13 would lead
to the removal of 775, the replacement of 133 by 777 and the removal of
M4 (because 1)y does not contain the pivot required by 15), with 7
also being replaced by 171. Then resolution between 777 and 7)¢ results
in 175, which cannot be resolved with 7jg, as shown below.

U - P(Ca d) - P(U9 V) - Q(f(aa V)aU)
77;: - Q(f(aa d)a C)

ns: q(f(a,e),c) F

T)s- Q(f(a'a 6),6) -

W' 77
n's literal g(f(a, V'), U), which would be resolved with ng's literal,
was changed to Q(f(a, d), c) due to resolution between 177 and 7.

Regularization Unifiability

Let 17 be a node with safe literals ¢ that is marked for regularization
with parents 171 and 172, where 775 is marked as a deletedNode in a
proof ©». m is said to satisfy the regularization unifiability property in
1) if there exists a substitution o such that 1,0 C o.

The First-Order Algorithm

Similar idea to the propositional case, but with care taken to
ensure proofs satisfy the last two properties.

First order factoring also employed to reduce proof size further,
e.g. if n1 : p(X),p(Y) I, factor to 1} : p(X) F before
performing resolution.

Intersection of safe literals must also employ unification.

Does not compress all first-order proofs (yet).

Preliminary Results
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compress all proofs.

Compressed Proof Length (GFOLU(FORPI(p)))

Future Directions

Larger evaluation - more proofs, bigger proofs

ldentify properties that would enable all irregular first-order
proofs to be compressed

s it possible to lift other propositional proof compression
techniques to firs-order logic?
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