

Partial Regularization of First-Order Resolution Proofs

Jan Gorzny

jgorzny@uwaterloo.ca

School of Computer Science, University of Waterloo

Supported by the Google Summer of Code Program 2014

UNIVERSITY OF WATERLOO
FACULTY OF MATHEMATICS
David R. Cheriton School
of Computer Science



Introduction

- As the ability of automated deduction has improved, it has been applied to new application domains; e.g. Furbach et al. [2] used it in natural language reasoning.
- Resolution proof production is a key feature of modern theorem provers; the best, most-efficient provers do not necessarily generate the best, least redundant proofs.
- For proofs using propositional resolution generated by SAT- and SMT-solvers, there are many proof compression techniques.
- One approach to compressing first-order logic proofs is to lift ideas used in propositional logic.

Propositional RecyclePivotsWithIntersection [1]

- Traverse a proof from the bottom up: store for every node a set of *safe literals*: literals resolved in all paths below the node
- For any node whose resolved literals are safe, replace it with one of its parents (*regularizing it*.)

The set of safe literals for a node η will be denoted $\mathcal{S}(\eta)$.

A Propositional Example

Consider the proof ψ shown below:

$$\frac{\eta_1: a, c, \neg b \quad \eta_2: a, c, \neg b \quad \eta_3: a, b, a \quad \eta_4: \neg a, \neg b, \neg c \quad \eta_5: a, c, a \quad \eta_6: \neg c, c}{\psi: \perp}$$

The algorithm RPI assigns $\mathcal{S}(\eta_5) \leftarrow \{a, c\}$, $\mathcal{S}(\eta_8) \leftarrow \{a, \neg c\}$, and $\mathcal{S}(\eta_4) \leftarrow \{a, c, b\} \cap \{a, \neg c, b\} = \{a, b\}$. Since $a \in \mathcal{S}(\eta_4)$ where a is a pivot of η_4 , η_4 is detected as a redundant node and regularized by replacing it by its right parent η_3 :

$$\frac{\eta_1: \neg a \quad \eta_2: a, c, \neg b \quad \eta_3: a, b \quad \eta_4: \neg a, \neg c, \neg b \quad \eta_5: a, c \quad \eta_6: c}{\psi: \perp}$$

A First-Order Example

Consider the proof ψ below. When computed as in the propositional case, $\mathcal{S}(\eta_3) \leftarrow \{\vdash q(c), p(a, X)\}$

$$\frac{\eta_1: \vdash p(W, X) \quad \eta_2: \vdash q(c) \quad \eta_3: \vdash q(c) \quad \eta_4: q(c) \vdash p(a, X) \quad \eta_5: \vdash p(a, X) \quad \eta_6: p(Y, b) \vdash}{\psi: \perp}$$

Since $p(W, X) \neq p(a, X)$, propositional RPI algorithm would not change ψ . However, η_3 's left pivot $p(W, X) \in \eta_1$ is unifiable with the safe literal $p(a, X)$. Regularizing η_3 , by deleting the edge between η_2 and η_3 and replacing η_3 by η_1 , leads to further deletion of η_4 (because it is not resolvable with η_1) and finally to the following proof:

$$\frac{\eta_1: \vdash p(W, X) \quad \eta_6: p(Y, b) \vdash}{\psi': \perp}$$

Unifiability is Not Enough

Consider ψ below. When computed as in the propositional case, $\mathcal{S}(\eta_3) \leftarrow \{\vdash q(c), p(a, X)\}$, and as the pivot $p(a, c)$ is unifiable with the safe literal $p(a, X)$, η_3 appears to be a candidate for regularization.

$$\frac{\eta_1: \vdash p(a, c) \quad \eta_2: p(a, c) \vdash q(c) \quad \eta_3: \vdash q(c) \quad \eta_4: q(c) \vdash p(a, X) \quad \eta_5: \vdash p(a, X) \quad \eta_6: p(Y, b) \vdash}{\psi: \perp}$$

However, if we attempt to regularize the proof, the same series of actions as in the last example would require resolution between η_1 and η_6 , which is not possible.

Pre-Regularization Unifiability

Let η be a node with pivot ℓ' unifiable with safe literal ℓ which is resolved against literals ℓ_1, \dots, ℓ_n in a proof ψ . η is said to satisfy the *pre-regularization unifiability property* in ψ if ℓ_1, \dots, ℓ_n , and ℓ' are unifiable.

Pre-Regularization Unifiability: Still Not Enough

Consider the proof ψ below. After collecting the safe literals, $\mathcal{S}(\eta_3) \leftarrow \{q(T, V), p(c, d) \vdash q(f(a, e), c)\}$.

$$\frac{\eta_1: p(U, V) \vdash q(f(a, V), U) \quad \eta_2: q(f(a, X), Y), q(T, X) \vdash q(f(a, Z), Y) \quad \eta_3: \vdash p(c, d) \quad \eta_4: \vdash q(R, S) \quad \eta_5: p(U, V) \vdash q(f(a, Z), U) \quad \eta_6: \vdash p(U, V) \vdash q(f(a, e), c) \quad \eta_7: \vdash q(f(a, Z), c)}{\psi: \perp}$$

η_3 's pivot $q(f(a, V), U)$ is unifiable to (and even more general than) the safe literal $q(f(a, e), c)$. Attempting to regularize η_3 would lead to the removal of η_2 , the replacement of η_3 by η_1 and the removal of η_4 (because η_1 does not contain the pivot required by η_5), with η_5 also being replaced by η_1 . Then resolution between η_1 and η_6 results in η'_7 , which cannot be resolved with η_8 , as shown below.

$$\frac{\eta_8: Q(f(a, e), c) \vdash \eta_6: \vdash P(c, d) \quad \eta_1: \vdash P(U, V) \vdash Q(f(a, V), U) \quad \eta'_7: \vdash Q(f(a, d), c)}{\psi': ??}$$

η_1 's literal $q(f(a, V), U)$, which would be resolved with η_8 's literal, was changed to $Q(f(a, d), c)$ due to resolution between η_1 and η_6 .

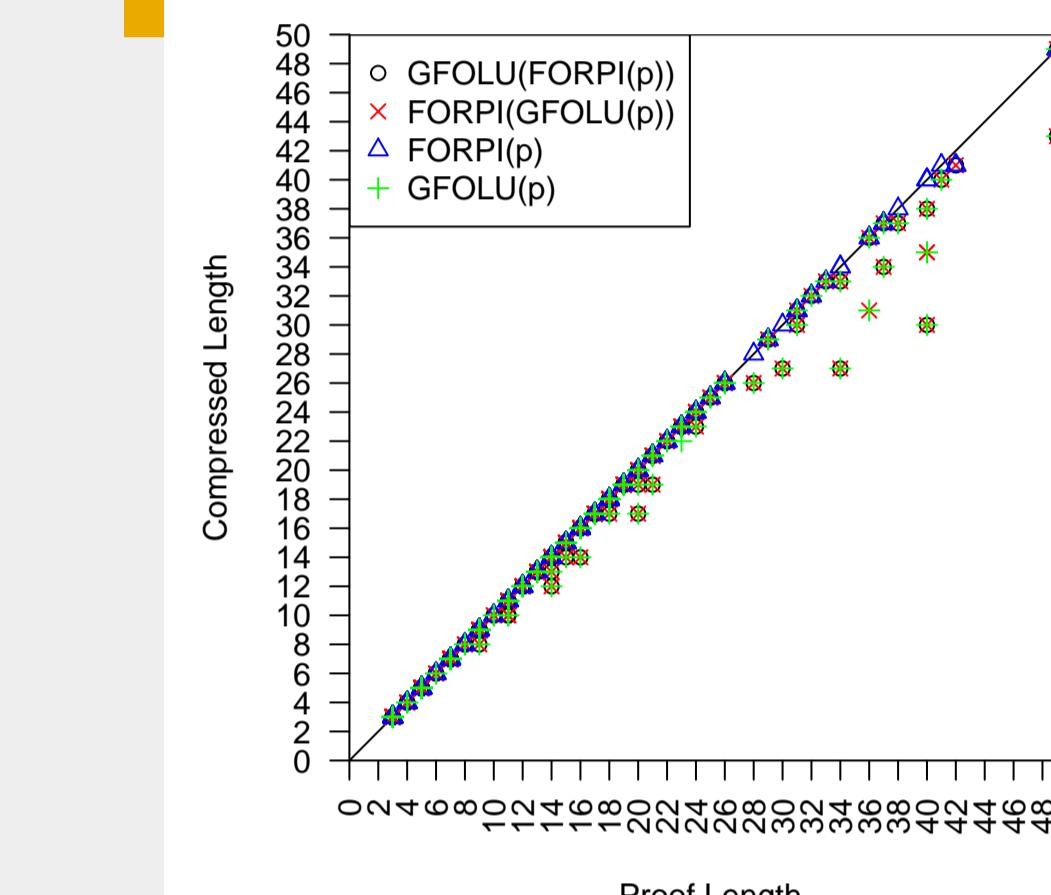
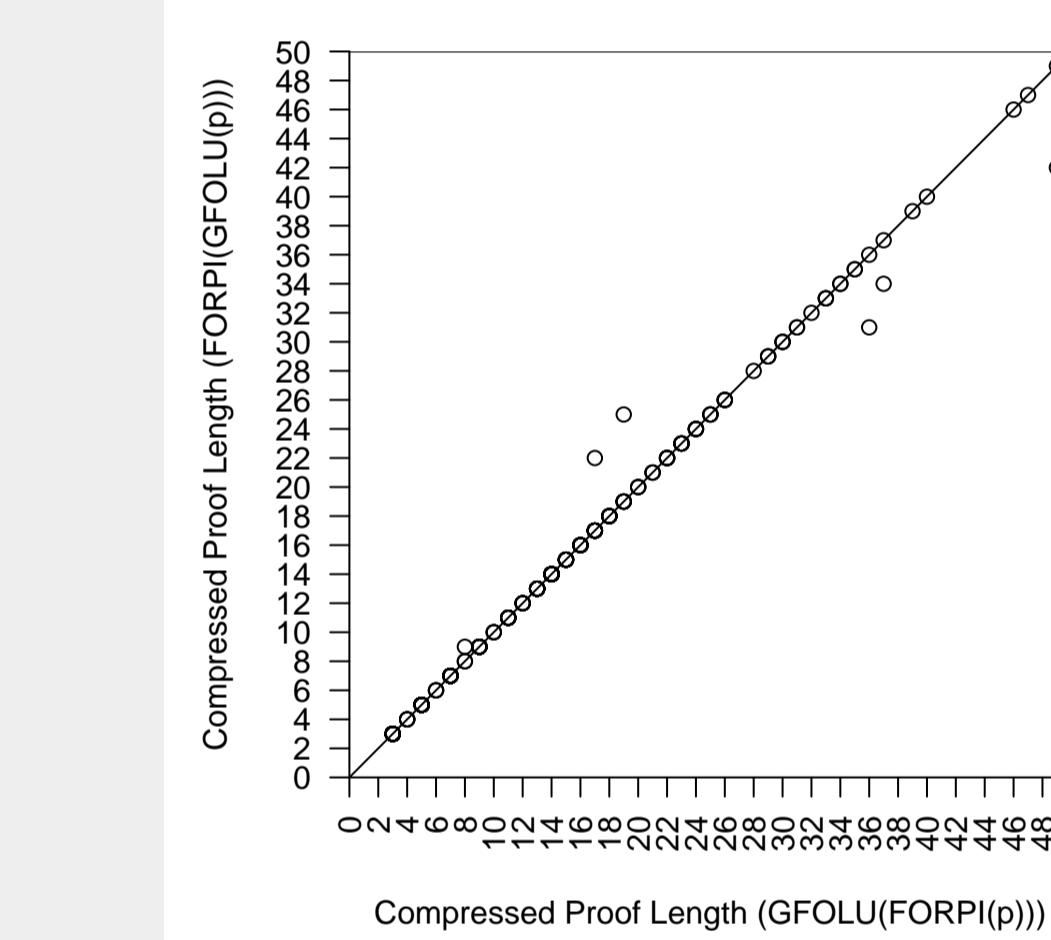
Regularization Unifiability

Let η be a node with safe literals ϕ that is marked for regularization with parents η_1 and η_2 , where η_2 is marked as a *deletedNode* in a proof ψ . η is said to satisfy the *regularization unifiability property* in ψ if there exists a substitution σ such that $\eta_1\sigma \subseteq \phi$.

The First-Order Algorithm

- Similar idea to the propositional case, but with care taken to ensure proofs satisfy the last two properties.
- First order *factoring* also employed to reduce proof size further, e.g. if $\eta_1 : p(X), p(Y) \vdash$, factor to $\eta'_1 : p(X) \vdash$ before performing resolution.
- Intersection of safe literals must also employ unification.
- Does not compress all first-order proofs (yet).

Preliminary Results



Future Directions

- Larger evaluation - more proofs, bigger proofs
- Identify properties that would enable all irregular first-order proofs to be compressed
- Is it possible to lift other propositional proof compression techniques to first-order logic?

References

- [1] P. Fontaine, S. Merz, and B. Woltzenlogel Paleo. Compression of propositional resolution proofs via partial regularization. In *CADE-23*. Springer, 2011.
- [2] Ulrich Furbach, Björn Pelzer, and Claudia Schon. Automated reasoning in the wild. In *CADE-25*. Springer, 2015.
- [3] J. Gorzny and B. Woltzenlogel Paleo. Towards the compression of first-order resolution proofs by lowering unit clauses. In *CADE-25*. Springer, 2015.