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“The 24th problem in my Paris lecture was to be: Criteria of simplicity,
or proof of the greatest simplicity of certain proofs. Develop a theory of
the method of proof in mathematics in general. Under a given set of
conditions there can be but one simplest proof. Quite generally, if there
are two proofs for a theorem, you must keep going until you have
derived each from the other, or until it becomes quite evident what
variant conditions (and aids) have been used in the two proofs. ”
—David Hilbert [Thi03]
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@ The best, most efficient provers, do not generate the best, least
redundant proofs.

@ Many compression algorithms for propositional proofs; few for
first-order proofs.

@ Finding a minimal proof is NP-hard, so use heuristics to find
smaller proofs (see [FMP11])
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@ Larger proofs harder/longer to check; use more resources

@ Proofs that are too large may mean solutions can’t be written (SAT
2014)

@ May use a strict subset of original hypothesis: better proofs!
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Lifting propositional proof compression algorithms to first-order logic.
Previous work: LowerUnits [FMP11].

This work: RecyclePivotWithIntersection [FMP11, BIFHT08]
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Removes irregularities: inferences n where the pivot occurs as a pivot
of another inference below 7 on the path to the root

@ Store a set of safe S(n) literals for each node 7
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Removes irregularities: inferences n where the pivot occurs as a pivot
of another inference below 7 on the path to the root

@ Store a set of safe S(n) literals for each node 7

@ If there are multiple paths, take intersection of safe literals
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Removes irregularities: inferences n where the pivot occurs as a pivot
of another inference below 7 on the path to the root

@ Store a set of safe S(n) literals for each node 7
@ If there are multiple paths, take intersection of safe literals

@ Bottom-up: compute safe literals; mark deletions
@ Top-down: regularize
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Regularization Can Be Bad

Resolution without irregularities is still complete. But:

Theorem ([Tse70])

There are unsatisfiable formulas whose shortest reqular resolution
refutations are exponentially longer than their shortest unrestricted
resolution refutations.
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m: Ep(W, X) n2: p(W, X) - q(c)
p(a.X)} \ / {p(W, X) - g(c), p(a, X)}
it q na: q(c) = p(a, X)
{F q(c).p(a. X)) \ / {a(e) F p(a. X))
ne: P(Y,b) - st = p(a, X)
{p(Y.b) F} i {- pla, X)}
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ne: P(Y,b) - n: = p(W,X)

o={W-—=Y,X— b}
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771'|_p(W’C) ’I’]gip(W,X)I—CI(C)
{F q(c), p(a. X) } \ / {p(W, X) F q(c), p(a, X)}
n3: F qg(c) n4: q(c) F p(a, X)
{r a(e). p(a, X)} \ / {a(e) - pla. X)}
ne: P(Y,b) F st = p(a, X)
{p(Y,b) F} i {+ p(a, X)}
o={W-=aX-c} = on €S(mn)
but... !(:[(R)DE
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N6- p(Y7 b) = m: - p(ca a)

no o!
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Pre-Regularization Unifiability

Definition

Let  be a node with pivot ¢’ unifiable with safe literal ¢ which is
resolved against literals ¢4, ..., £, in a proof 4. n is said to satisfy the
pre-regularization unifiability property in + if £4,. .. ,¢n, and ¢’ are
unifiable.
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m: p(U, V) q(f(a, V), ne: q(f(a X), Y),q(T,X) - q(f(a, 2), Y)
\
na: - q(R, S) n: p(U, V), q(T, V) - q(f(a 2), U)
ne: = p(c, d) ns: p(U, V) - q(f(a, Z), V)
T/
ng: q(f(a,e),c) F - q(f(a, Z), c)
\L/ o
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mi p(U, V) F q(f(a, V),U)  me-gtfas X sl T- X —atfa2)¥)

—

na: Fq(R,S) ns: p(U, V), q(T, V) F q(f(a, 2), U)
i Hocd\ns o(U, V) - q(f(a, 2), U)
ne: q((a, €),0) F mF a(f(a,.2).c
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na: - q(R, S)\mp(umq a, V), U)
ne: - p(c, d)\% p(U, V) F q(f(a Z), U)
ng: q(f(a,e),c) - - q(f(a, 2), c)
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m: p(U, V) q(f(a, V), U)

\

ne: - p(c, d)\% p(U, V) - qf(a 2),u)
ng: q(f(a e),c) m: b q(f(a,2), 0)
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e: - p(c, d) m: p(U, V) q(f(a, V), U)

T/

ng: q(f(a e),c) - - q(f(a 2),

\l/'
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e: - p(c, d) m: p(U, V)  q(f(a, V), U)

T~/

ne: q(f(a,e),c n7: - q(f(a, d),c

\/’
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Regularization Unifiability

Definition

Let n be a node with safe literals S(n) = ¢ that is marked for
regularization with parents ny and 7., where 7, is marked as a
deletedNode in a proof ¢. n is said to satisfy the regularization
unifiability property in 1 if there exists a substitution ¢ such that
mo C .
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@ Traverse bottom up, collect safe literals (apply unifiers to pivots),
check pre-regularization property

@ Traverse top-down, check regularization property
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@ Greedy First-Order Lower Units, Recycle Pivots With Intersection
implemented as part of Skeptik (in Scala)

@ > 2400 randomly generated resolution proofs

@ minutes to generate, seconds to compress
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Algorithm

H TPTP

# of Proofs Compressed

H TPTP

# of Removed Nodes

Gorzny, Postan, Woltzenlogel Paleo

First-Order Partial Regularization

Random Both Random Both
GFOLU(p) 55 (17.9%) 817 (35.9%) 872 (33.7%) 107 (4.8%) 17.769 (4.5%) 17.876 (4.5
FORPI(p) 23 (7.5%) 666 (29.2%) 689 (26.2%) 36 (1.6%) 28,904 (7.3%) 28,940 (7.
GFOLU(FORPI(p)) 55(17.9%) | 1303 (57.1%) | 1358 (52.5%) 120 (5.4%) | 48.126 (12.2%) | 48,246 (12..
FORPI(GFOLU(p)) 23 (7.5%) | 1302 (57.1%) | 1325(51.2%) 120 (5.4%) | 48.434 (12.3%) | 48,554 (12.:
Best 59 (19.2%) | 1303 (57.1%) | 1362(52.5%) 120 (5.4%) | 55,530 (14.1%) | 55,650 (14.(
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Algorithm First-Order Compression Algorithm Propositional Compression
All | Compressed Only

GFOLU(p) 4.5% 13.5% LU(p) 7.5%

FORPI(p) 6.2% 23.2% RPI(p) 17.8%

GFOLU(FORPI(p)) | 10.6% 23.0% (LURPI(p)) 21.7%

FORPI(GFOLU(p)) | 11.1% 21.5% (RPI(LU(p)) 22.0%

Best 12.6% 24.4% Best 22.0%
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@ Another simple, quick algorithm lifted from propositional to
first-order logic for proof compression. Use both!
o LowerUnits compresses more often
o RPI compresses more

@ Future work:

o Explore other proof compression algorithms?
o Explore ways of dealing with the post-deletion property quickly

Thank you for your attention.
Any questions?

@ Source code: https://github.com/jgorzny/Skeptik

@ Data: https://cs.uwaterloo.ca/~Jjgorzny/data/
@ Expanded paper on Arxiv! o
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https://github.com/jgorzny/Skeptik
https://cs.uwaterloo.ca/~jgorzny/data/
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ng: P(X), q(X), r(X) - n7: Fp(Y)
ne: q(Y), r(Y) ns: P(Z) - q(2)
na: p(Z),r(Z) = n3t Fr(W)
n2: p(W) = n: Fp(U)
P L

Gogle
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