

Partial Regularization of First-Order Resolution Proofs

J. Gorzny¹ E. Postan² B. Woltzenlogel Paleo^{3,4}

¹University of Waterloo

²Universidad Nacional de Rosario

³Australian National University

⁴Vienna University of Technology

26 Oct 2020

The Quest for Simple Proofs

“The 24th problem in my Paris lecture was to be: Criteria of simplicity, or proof of the greatest simplicity of certain proofs. Develop a theory of the method of proof in mathematics in general. Under a given set of conditions there can be but one simplest proof. Quite generally, if there are two proofs for a theorem, you must keep going until you have derived each from the other, or until it becomes quite evident what variant conditions (and aids) have been used in the two proofs. ”

—David Hilbert [Thi03]

First-Order Proof Compression Motivation

- The best, most efficient provers, do not generate the best, least redundant proofs.
- Many compression algorithms for propositional proofs; few for first-order proofs.
- Finding a minimal proof is NP-hard, so use heuristics to find smaller proofs (see [FMP11])

The ‘Real World’

nature.com : Sitemap

nature

International weekly journal of science

[Home](#) | [News & Comment](#) | [Research](#) | [Careers & Jobs](#) | [Current Issue](#) | [Archive](#) | [Audio & Video](#) | [For](#)

[Archive](#) > [Volume 534](#) > [Issue 7605](#) > [News](#) > [Article](#)

[NATURE](#) | [NEWS](#)

Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?

Evelyn Lamb

26 May 2016

(See [HKM16])

2014

Proofs as Interfaces

- Larger proofs harder/longer to check; use more resources
- Proofs that are too large may mean solutions can't be written (SAT 2014)
- May use a strict subset of original hypothesis: better proofs!

Our Goal

Lifting propositional proof compression algorithms to first-order logic.

Previous work: LowerUnits [FMP11].

This work: RecyclePivotWithIntersection [FMP11, BIFH⁺08]

Recycling Pivots

Removes *irregularities*: inferences η where the pivot occurs as a pivot of another inference below η on the path to the root

- Store a set of *safe* $\mathcal{S}(\eta)$ literals for each node η
- If there are multiple paths, take *intersection* of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize

Recycling Pivots

Removes *irregularities*: inferences η where the pivot occurs as a pivot of another inference below η on the path to the root

- Store a set of *safe* $\mathcal{S}(\eta)$ literals for each node η
- If there are multiple paths, take *intersection* of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize

Recycling Pivots

Removes *irregularities*: inferences η where the pivot occurs as a pivot of another inference below η on the path to the root

- Store a set of *safe* $\mathcal{S}(\eta)$ literals for each node η
- If there are multiple paths, take *intersection* of safe literals
- Bottom-up: compute safe literals; mark deletions
- Top-down: regularize

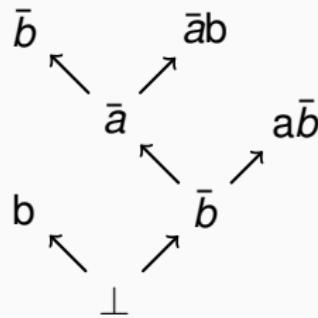
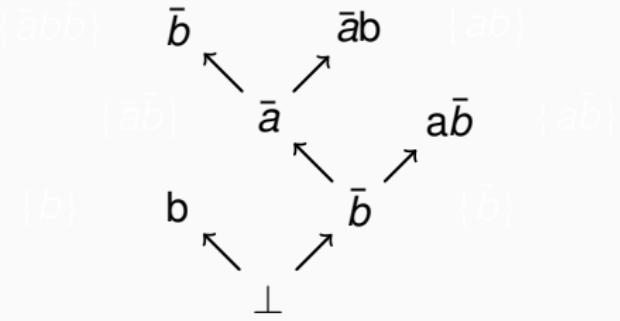
Regularization Can Be Bad

Resolution without irregularities is still complete. But:

Theorem ([Tse70])

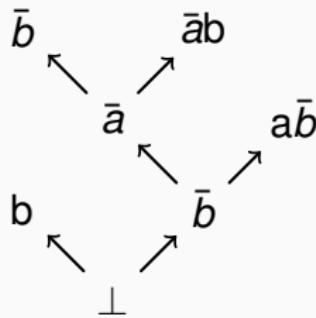
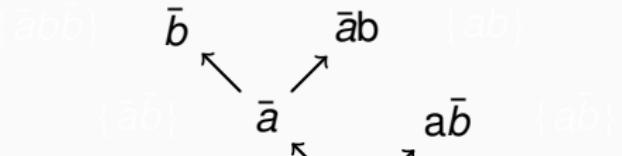
There are unsatisfiable formulas whose shortest regular resolution refutations are exponentially longer than their shortest unrestricted resolution refutations.

Propositional Example



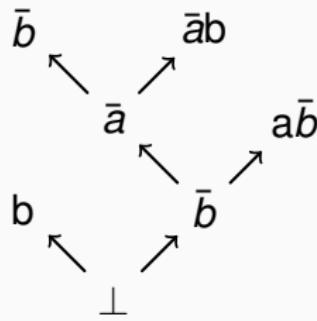
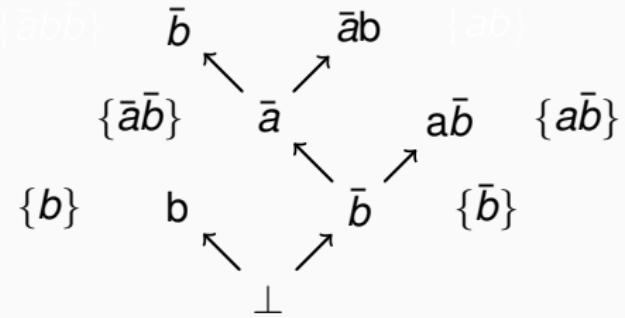
↑ safe literal collection

Propositional Example



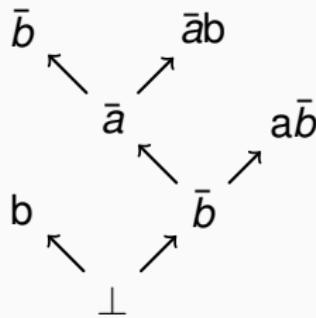
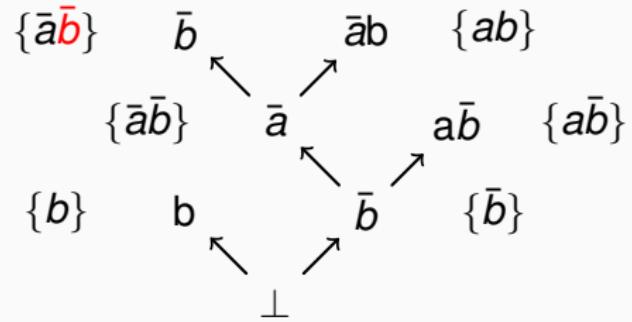
↑ safe literal collection

Propositional Example



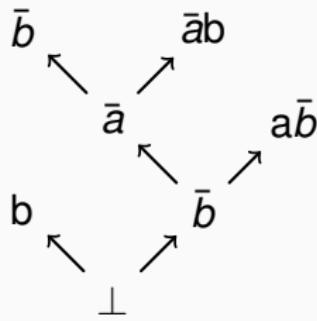
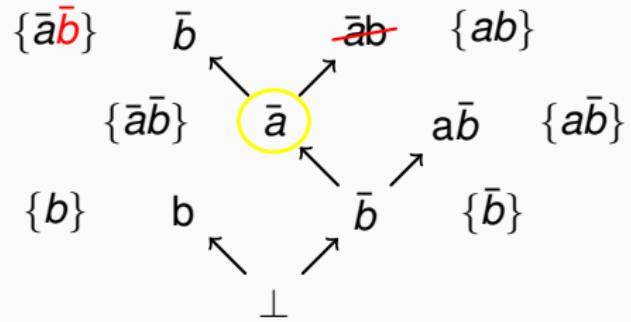
↑ safe literal collection

Propositional Example



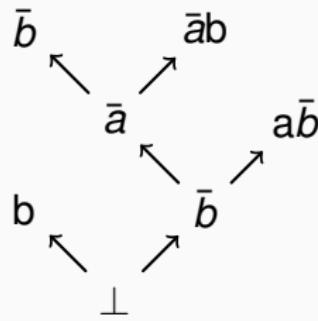
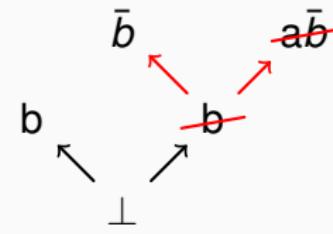
↑ safe literal collection

Propositional Example



↑ safe literal collection

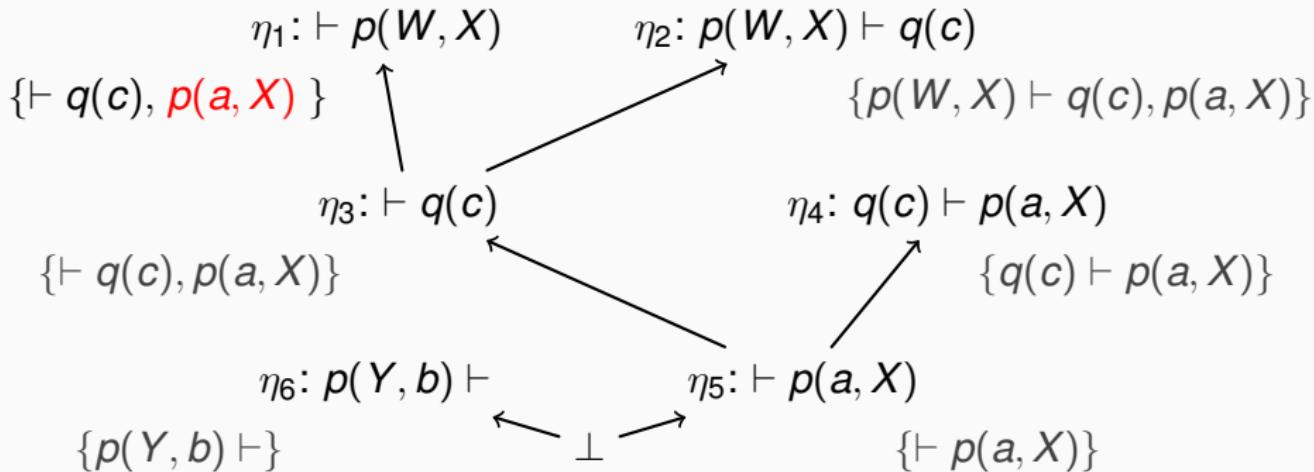
Propositional Example



↓ regularization

Propositional Example

Pre-Regularization Checks I

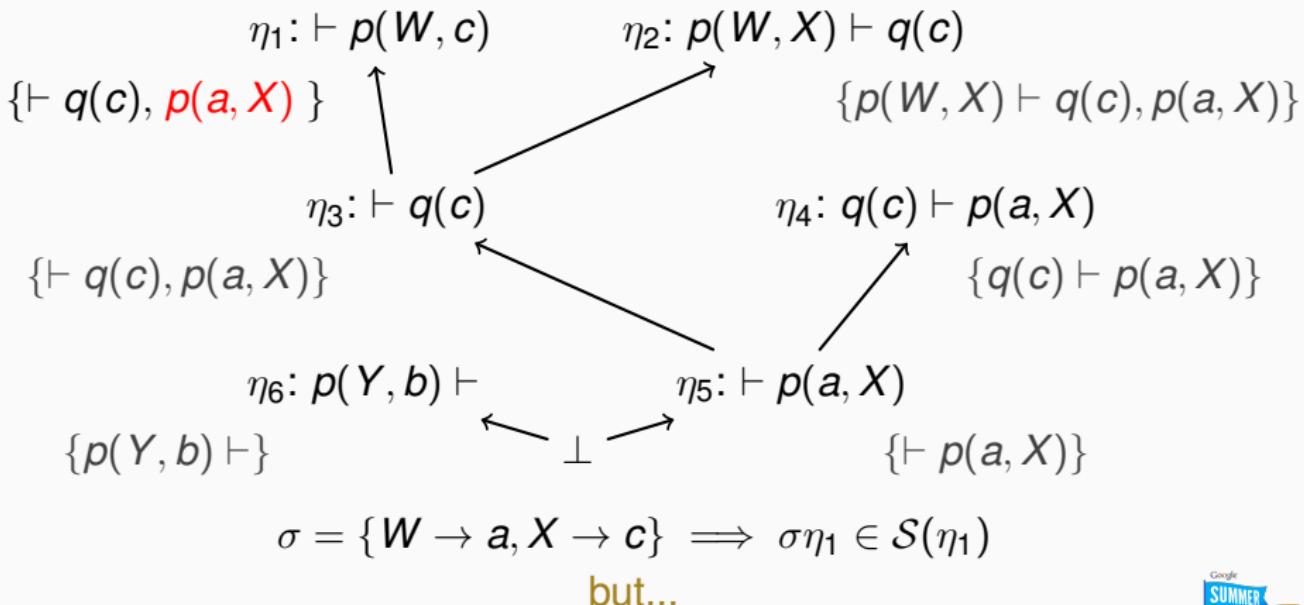


$$\sigma = \{W \rightarrow a\} \implies \sigma\eta_1 \in \mathcal{S}(\eta_1)$$

Pre-Regularization Checks I

$$\eta_6: p(Y, b) \vdash \quad \quad \eta_1: \vdash p(W, X)$$
$$\begin{array}{c} \swarrow \quad \searrow \\ \perp \end{array}$$
$$\sigma = \{W \rightarrow Y, X \rightarrow b\}$$

Pre-Regularization Checks II



Pre-Regularization Checks II

$$\eta_6: p(Y, b) \vdash \quad \eta_1: \vdash p(c, a)$$

$\xleftarrow{\perp} \xrightarrow{\perp}$

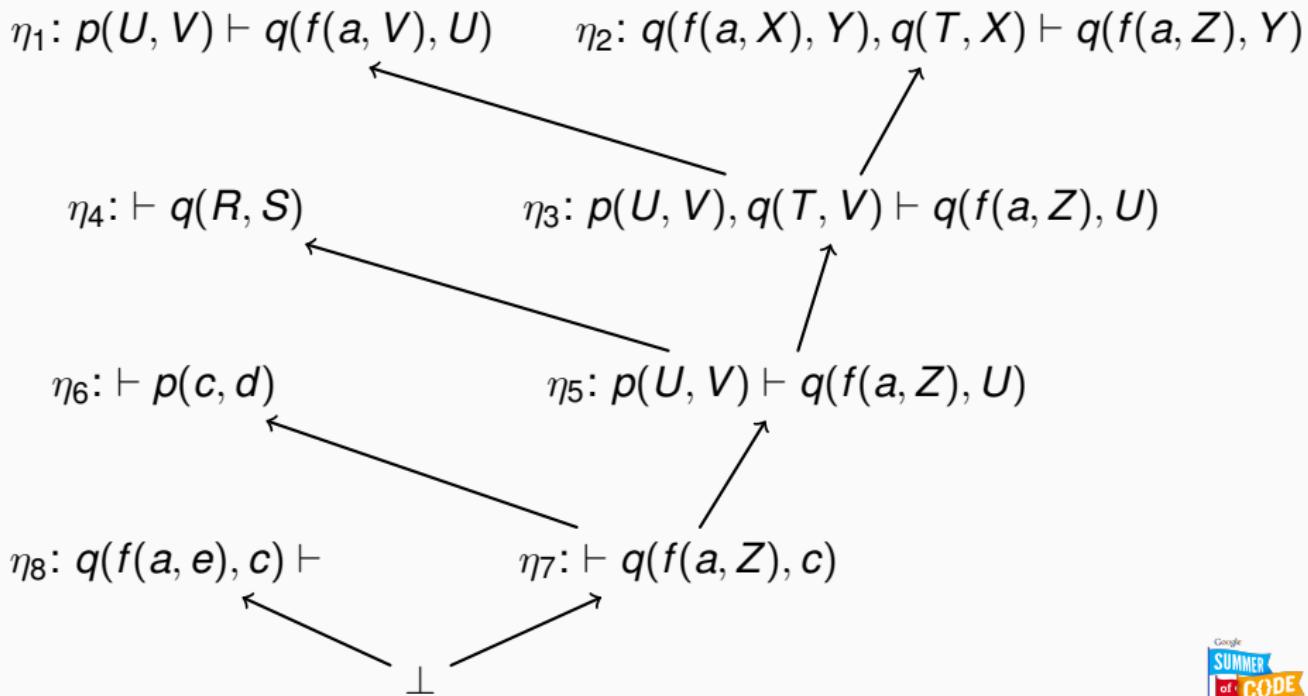
no σ !

Pre-Regularization Unifiability

Definition

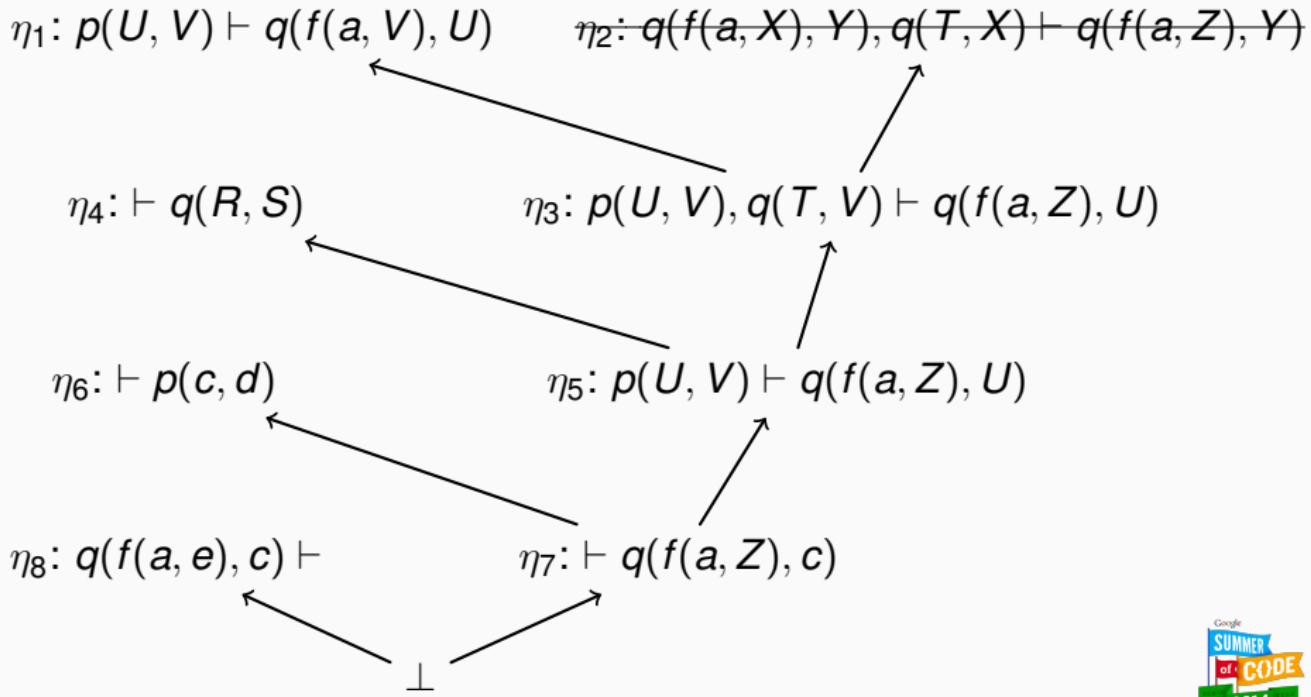
Let η be a node with pivot ℓ' unifiable with safe literal ℓ which is resolved against literals ℓ_1, \dots, ℓ_n in a proof ψ . η is said to satisfy the *pre-regularization unifiability property* in ψ if ℓ_1, \dots, ℓ_n , and $\bar{\ell}'$ are unifiable.

Post-Regularization Checks



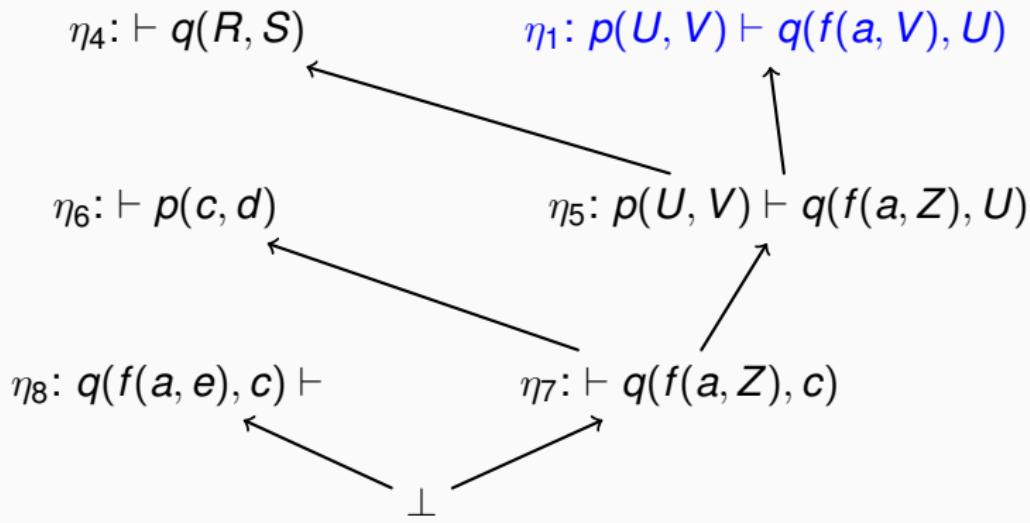
$$S(\eta_3) = \{q(T, V), p(c, d) \vdash q(f(a, e), c)\}$$

Post-Regularization Checks



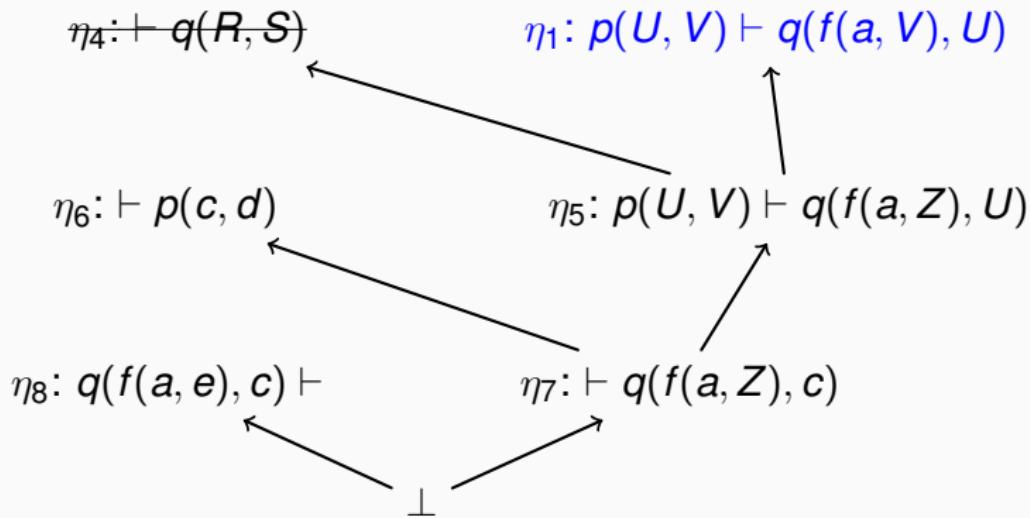
Post-Regularization Checks

$\eta_1: p(U, V) \vdash q(f(a, V), U) \wedge q(f(a, X), V) \wedge q(T, X) \vdash q(f(a, Z), V)$



Post-Regularization Checks

$\eta_1: p(U, V) \vdash q(f(a, V), U) \wedge q(f(a, X), V) \wedge q(T, X) \vdash q(f(a, Z), V)$

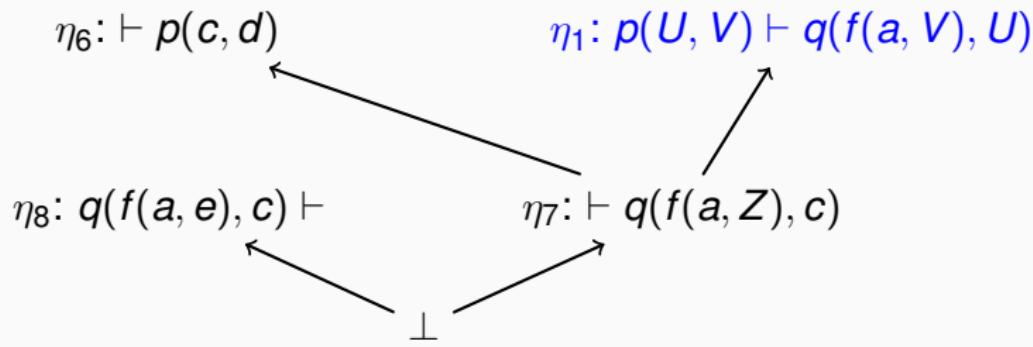


Post-Regularization Checks

$\eta_1: p(U, V) \vdash q(f(a, V), U) \wedge q(f(a, X), Y), q(T, X) \vdash q(f(a, Z), Y)$

$\eta_2: q(B, S)$

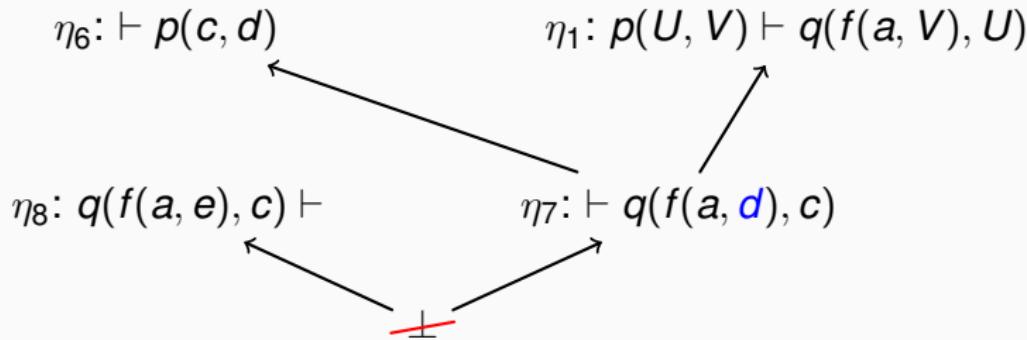
$\eta_3: p(U, V) \vdash q(f(a, V), U)$



Post-Regularization Checks

$$\eta_1: p(U, V) \vdash q(f(a, V), \mathcal{D}q(f(a, X), Y), q(T, X) \vdash q(f(a, Z), Y)$$

$$\eta_2: \vdash q(B, S) \quad \eta_3: p(U, V) \vdash q(f(a, V), U)$$



Regularization Unifiability

Definition

Let η be a node with safe literals $S(\eta) = \phi$ that is marked for regularization with parents η_1 and η_2 , where η_2 is marked as a `deletedNode` in a proof ψ . η is said to satisfy the *regularization unifiability property* in ψ if there exists a substitution σ such that $\eta_1\sigma \subseteq \phi$.

- Traverse bottom up, collect safe literals (apply unifiers to pivots), check pre-regularization property
- Traverse top-down, check regularization property

Experiment Setup

- Greedy First-Order Lower Units, Recycle Pivots With Intersection implemented as part of Skeptik (in Scala)
- > 2400 randomly generated resolution proofs
- minutes to generate, seconds to compress

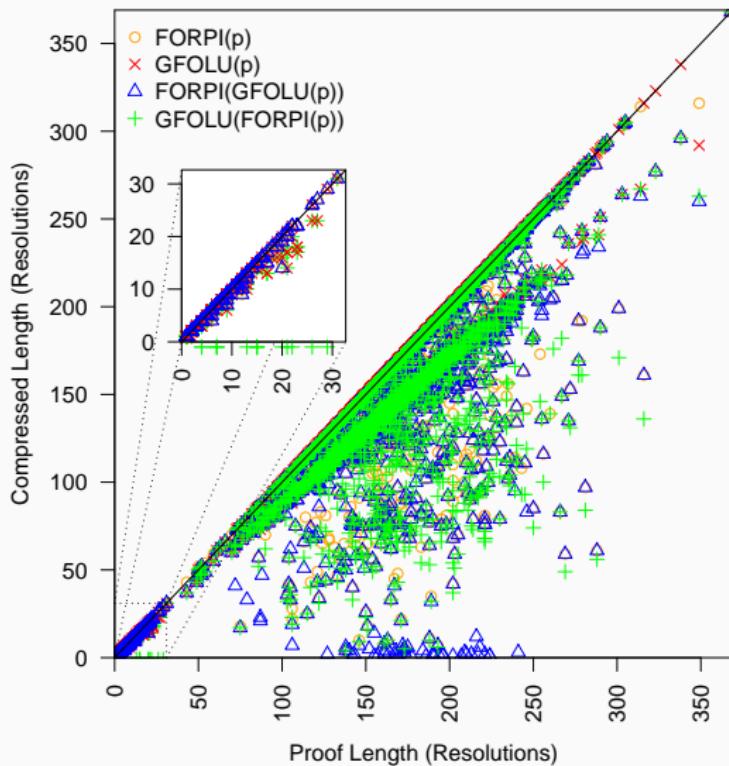
Results

Algorithm	# of Proofs Compressed			# of Removed Nodes		
	TPTP	Random	Both	TPTP	Random	Both
GFOLU(p)	55 (17.9%)	817 (35.9%)	872 (33.7%)	107 (4.8%)	17,769 (4.5%)	17,876 (4.5%)
FORPI(p)	23 (7.5%)	666 (29.2%)	689 (26.2%)	36 (1.6%)	28,904 (7.3%)	28,940 (7.3%)
GFOLU(FORPI(p))	55 (17.9%)	1303 (57.1%)	1358 (52.5%)	120 (5.4%)	48,126 (12.2%)	48,246 (12.2%)
FORPI(GFOLU(p))	23 (7.5%)	1302 (57.1%)	1325 (51.2%)	120 (5.4%)	48,434 (12.3%)	48,554 (12.3%)
Best	59 (19.2%)	1303 (57.1%)	1362 (52.5%)	120 (5.4%)	55,530 (14.1%)	55,650 (14.0%)

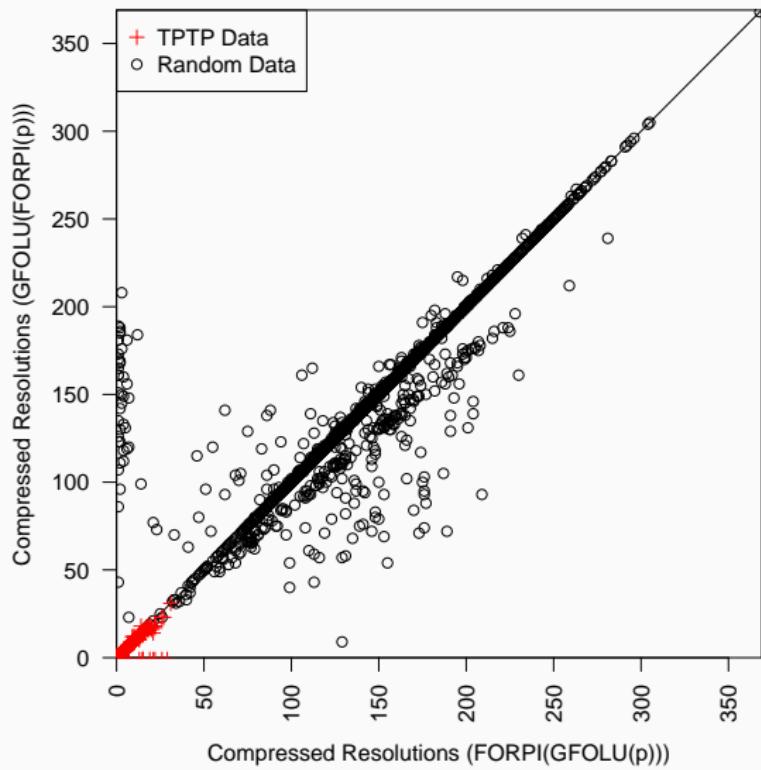
Results

Algorithm	First-Order Compression		Algorithm	Propositional Compression [3]
	All	Compressed Only		
GFOLU(p)	4.5%	13.5%	LU(p)	7.5%
FORPI(p)	6.2%	23.2%	RPI(p)	17.8%
GFOLU(FORPI(p))	10.6%	23.0%	(LU(RPI(p)))	21.7%
FORPI(GFOLU(p))	11.1%	21.5%	(RPI(LU(p)))	22.0%
Best	12.6%	24.4%	Best	22.0%

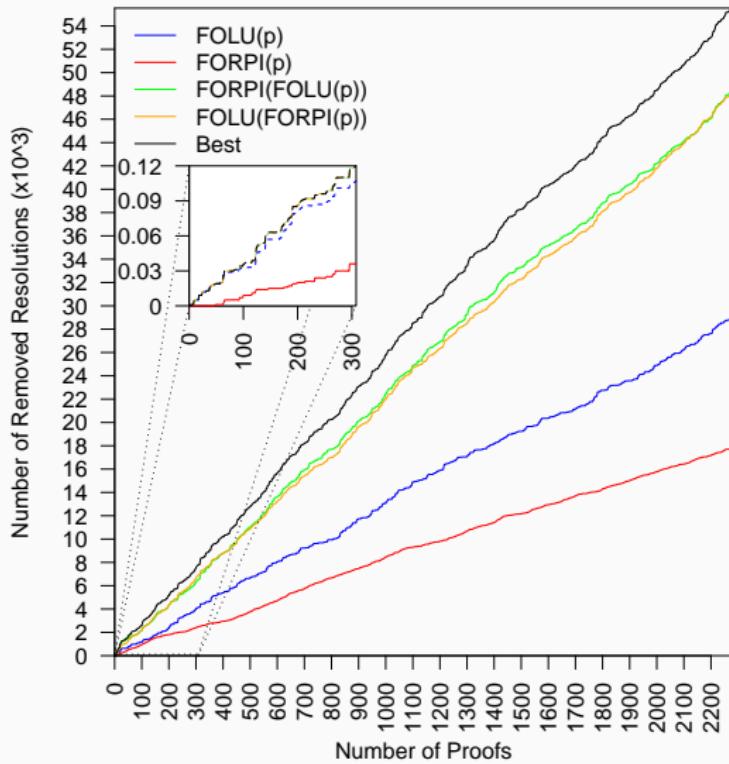
Results



Results



Results



Conclusion

- Another simple, quick algorithm lifted from propositional to first-order logic for proof compression. Use both!
 - LowerUnits compresses more often
 - RPI compresses more
- Future work:
 - Explore other proof compression algorithms?
 - Explore ways of dealing with the post-deletion property quickly

Thank you for your attention.

Any questions?

- Source code: <https://github.com/jgorzny/Skeptik>
- Data: <https://cs.uwaterloo.ca/~jgorzny/data/>
- Expanded paper on Arxiv!

References i

- Omer Bar-Ilan, Oded Fuhrmann, Shlomo Hoory, Ohad Shacham, and Ofer Strichman, *Linear-time reductions of resolution proofs*, Haifa Verification Conference, Springer, 2008, pp. 114–128.
- Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo, *Compression of propositional resolution proofs via partial regularization*, International Conference on Automated Deduction, Springer, 2011, pp. 237–251.
- Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek, *Solving and verifying the boolean pythagorean triples problem via cube-and-conquer*, CoRR [abs/1605.00723](https://arxiv.org/abs/1605.00723) (2016).
- Rüdiger Thiele, *Hilbert's twenty-fourth problem*, The American mathematical monthly **110** (2003), no. 1, 1–24.

References ii

- Gregory Tseitin, *On the complexity of proofs in propositional logics*, Seminars in Mathematics, vol. 8, 1970, pp. 466–483.

To-do

$$\frac{\frac{\eta_8: p(X), q(X), r(X) \vdash \quad \eta_7: \vdash p(Y)}{\eta_6: q(Y), r(Y) \vdash} \quad \eta_5: p(Z) \vdash q(Z)}{\eta_4: p(Z), r(Z) \vdash} \quad \frac{\eta_3: \vdash r(W) \quad \eta_1: \vdash p(U)}{\eta_2: p(W) \vdash} \quad \frac{}{\psi: \perp}$$

