@ Zircuit

Temporarily Restricting
Solidity Smart Contract
Interactions

Valerian Callens, Quantstamp
Zeeshan Meghii, Quantstamp
Jan Gorzny, zircuit

DAPPS 2024, Shanghai, China
July 2024

@ Temporarily Restricting Solidity Smart Contract Interactions

What is this talk about?

dApps, implemented via smart contracts , are
e popular,
e responsible for millions of dollars in cryptocurrencies, and
e non-trivial to develop , especially for multiple chains simultaneously

How can we restrict access to them and with what trade-offs ?

@ Temporarily Restricting Solidity Smart Contract Interactions

Motivation

Conic Finance [10] Arbitrum, Optimism
Curve [11] Ethereum

dForce [12] Arbitrum, Optimism
Eralend [13] zkSync

Exactly [14] Optimism
Hundred [15] Ethereum

Orion [18)

@ Temporarily Restricting Solidity Smart Contract Interactions 4

Concerns for Interactions

e |Isreentrancy a thing of the past? No:

o Reentrancy was the cause of severdl of the previous
hacks
o “New” forms, like read-only reentrancy thatwas not
explicitly studied before caused others
e Isreentrancy the only problematic interaction? No:

o Non-reentrant exploits exist (e.g., from flash loans)
e Are dll methods the same on all “EVM-Compatible” / Solidity

supporting blockchains? No:

o Various rollups, let alone other layer one blockchains,
change the semantics of op-codes

ROLLUPCODES

@ Temporarily Restricting Solidity Smart Contract Interactions 5

Results

We want to be able to restrict interactions at various levels. We...
Review existing solutions for reentrancy

Generalize approaches to sets of functions and dApps
Describe read-only reentrancy

Restrict interactions within the same...

o Same transaction
o Block or time duration
e Highlight future work

@ Temporarily Restricting Solidity Smart Contract Interactions

Outline

e Existing solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same fransactions
o block or time based duration
e [Future work

@ Temporarily Restricting Solidity Smart Contract Interactions

Outline

e EXxisting solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same fransactions
o block or time based duration
e [Future work

@ Temporarily Restricting Solidity Smart Contract Interactions 8

Existing Solutions

e Checks-Effects Interaction pattern

o Design pattern fo mitigate effects of reentrancy,
even if it occurs
e Gas limiting external calls

o Don't supply enough gas to reenter; hardcoding
values that may change
e Non-reentrant modifier on functions (e.g., from
OpenZeppelin)
o Uses amutex to ensure non-reentrancy
o Always writes (cannot be used for view function)

@ Temporarily Restricting Solidity Smart Contract Interactions

Outline

e [EXxisting solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same transactions
o block or time based duration
e [Future work

@

Temporarily Restricting Solidity Smart Contract Interactions

Sets of Functions and dApps

e Modifiers dont need to be limited to
single functions — they can be shared

e Shared modifiers mean protection
across entire dApps

e Can use multiple locks to allow
some reenfrancy

e Can use the same lock for multiple
contracts

e Protecting opposite actions can be
valuable, especially in conjunction
with duration-based locks.

function fB

function fA
B{i sReentrant 1)

contract C

contract cA

function fA _ |

contract cB

function fb

—

10

@

Temporarily Restricting Solidity Smart Contract Interactions

Outline

e [EXxisting solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same transactions
o block or time based duration
e [Future work

11

Attacker Balancer Sentiment
Contract Contract Contract

@ Temporarily Restricting Solidity Smart Contract Interactions

Motivation

1. deposit (0

receive BPT

2. joinPool Q

receive BPT

Description of the Senfiment
protocol incident of 2023

3. exitPool ()%

4. Burn BPT
“Read-only” reentrancy: a = |
reqd_only fu nC-l-ion 5. fall ngack() (via da11 ()) ;
Of The dApp Wdas ehTered GT a bGd Borrow from Sentiment) Repeated foéxr times
time; involved other dApps 6. bogow ()
$1Mloss of cryptocurrency 7, getPrice (

Inflated price
————————— >

receive undercollateralized asset

Fixed affer the issue (but that's oo
late)

8. Update balaﬁces

P

@ Temporarily Restricting Solidity Smart Contract Interactions 13

Read-only Reentrancy

e Not solved properly ideally we don't want to just write via
mutexes everywhere — we want view functions

o EIP-1153 infroduces transient storage whichisa
middle ground; not yet well studied or exemplified.
e Difficult fo reason about; often overlooked by auditors

e May need more “heavyweight” properties or invariants;
may be most costly in other ways.

@

Temporarily Restricting Solidity Smart Contract Interactions

Outline

e [EXxisting solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same transactions
o block or time based duration
e [Future work

14

@ Temporarily Restricting Solidity Smart Contract Interactions 1

Same Transaction

e Allow two or more calls
within the same block
but not within the
same transaction

e Useswarm and cold
memory access

O 0 N N W A W

10

modifier calledMaxOncePerTransaction () {

address addressToCheck = address (
uintl160 (bytes20 (blockhash (block.
number))));

uint256 initialGas = gasleft();

uint256 temp = addressToCheck.balance;

uint256 gasConsumed = initialGas
- gasleft();

require (gasConsumed == 2631,

"already called in this transaction");

.
u—

@

Temporarily Restricting Solidity Smart Contract Interactions

Outline

e [EXxisting solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same tfransactions
o block or time based duration
e [Future work

16

@ Temporarily Restricting Solidity Smart Contract Interactions 17

Block or Time-Based Duration

Y DiSCI”OW TWO or more 1 abstrz.:lct contr:flct ReentrancyGuardDuration {
5 uint256 private constant _DELTA = 60
transactions per account seconds;
3 mapping (address => uint256) public
within a time period or latestEntry;
4 modifier nonReentrant () {
number of blocks 5 require (latestEntry[msg.sender] +
6 _DELTA <= Dblock.timestamp,
e Can be powerful for : "Called again too soon");
” . . 7 na 8 latestEntry[msg.sender] =
opposite actions” like , blodk /timestanps
deposit and withdrawal; no . g
flash loans ol

e No meaningful difference
on Ethereum, but different
on some layer two
networks

@ Temporarily Restricting Solidity Smart Contract Interactions

Outline

e Existing solutions
e Sets of Functions and dApps

o Read-only reentrancy example
e Duration-based restrictions

o Same fransactions
o block or time based duration
e Future work

18

@ Temporarily Restricting Solidity Smart Contract Interactions 19

Conclusion & Future Work

We explicitly introduced...
e read-only reentrancy attacks

e Same transaction, block, ortime duration level restrictions
e Generalize approaches to sets of functions and dApps

Future work:

e Analysis of changes for opcodes on layer two networks I s
e Other approaches to counter read-only reentrancy ” "
e Empirical analysis of these approaches (which are more

likely to break composability? gas cost tfrade-offs?) <
e EIP-1153 changes and their security implications

A Zircui

Thank you!

jan@zircuit.com

