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What is this talk about?
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dApps , implemented via smart contracts , are 
● popular ,
● responsible for millions of dollars in cryptocurrencies, and
● non-trivial to develop , especially for multiple chains simultaneously

How can we restrict access to them  and with what trade-offs ?
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Motivation
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Concerns for Interactions
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● Is reentrancy a thing of the past? No:
○ Reentrancy was the cause of several  of the previous 

hacks
○ “New” forms, like read-only  reentrancy  that was not 

explicitly studied before caused others
● Is reentrancy the only problematic interaction? No:

○ Non-reentrant exploits exist (e.g., from flash loans )
● Are all methods the same on all “EVM-Compatible” / Solidity 

supporting blockchains? No:
○ Various rollups, let alone other layer one blockchains, 

change the semantics  of op-codes
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Results
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We want to be able to restrict  interactions at various levels. We…
● Review existing solutions  for reentrancy
● Generalize approaches to sets of functions  and dApps
● Describe read-only reentrancy
● Restrict interactions within the same…

○ Same transaction
○ Block  or time  duration

● Highlight future work
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Outline
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● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work
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Outline
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Existing Solutions

● Checks-Effects Interaction  pattern
○ Design pattern to mitigate effects of reentrancy, 

even if it occurs
● Gas limiting  external calls

○ Don’t supply enough gas  to reenter; hardcoding 
values that may change

● Non-reentrant modifier  on functions (e.g., from 
OpenZeppelin)
○ Uses a mutex to ensure non-reentrancy
○ Always writes  (cannot be used for view function)
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Sets of Functions and dApps

● Modifiers don’t need to be limited to 
single functions – they can be shared

● Shared modifiers mean protection 
across entire dApps

● Can use multiple locks to allow 
some reentrancy

● Can use the same lock for multiple 
contracts

● Protecting opposite actions  can be 
valuable, especially in conjunction 
with duration-based locks.
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Motivation
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● Description of the Sentiment 
protocol  incident of 2023

● “Read-only” reentrancy: a 
read-only  function
of the dApp was entered at a bad 
time; involved other dApps

● $1M loss  of cryptocurrency
● Fixed after  the issue (but that’s too 

late)



Read-only Reentrancy

● Not solved properly  ideally we don’t want to just write via 
mutexes everywhere – we want view functions
○ EIP-1153 introduces transient storage  which is a 

middle ground; not yet well studied or exemplified.
● Difficult to reason about; often overlooked by auditors
● May need more “heavyweight” properties or invariants; 

may be most costly in other ways.
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Same Transaction

● Allow two or more calls 
within the same block  
but not within the 
same transaction

● Uses warm  and cold  
memory access
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Block or Time-Based Duration

● Disallow two or more 
transactions per account  
within a time period  or 
number of blocks

● Can be powerful for 
“opposite actions” like 
deposit and withdrawal; no 
flash loans

● No meaningful difference 
on Ethereum, but different 
on some layer two 
networks
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Conclusion & Future Work
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We explicitly introduced…
● read-only reentrancy  attacks
● Same transaction, block,  or time  duration  level restrictions
● Generalize approaches to sets of functions  and dApps

Future work:
● Analysis of changes for opcodes  on layer two networks
● Other approaches  to counter read-only reentrancy
● Empirical analysis  of these approaches (which are more 

likely to break composability? gas cost trade-offs?)
● EIP-1153 changes and their security implications
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Thank you!
jan@zircuit.com


