
This is place that hold a title of the presentation

Valerian Callens, Quantstamp

Zeeshan Meghji, Quantstamp

Jan Gorzny, Zircuit

Temporarily Restricting
Solidity Smart Contract
Interactions

DAPPS 2024, Shanghai, China
July 2024

This is place that hold a title of the presentation

What is this talk about?

2

dApps , implemented via smart contracts , are
● popular ,
● responsible for millions of dollars in cryptocurrencies, and
● non-trivial to develop , especially for multiple chains simultaneously

How can we restrict access to them and with what trade-offs ?

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentationTemporarily Restricting Solidity Smart Contract Interactions

Motivation
3

This is place that hold a title of the presentation

Concerns for Interactions

4

● Is reentrancy a thing of the past? No:
○ Reentrancy was the cause of several of the previous

hacks
○ “New” forms, like read-only reentrancy that was not

explicitly studied before caused others
● Is reentrancy the only problematic interaction? No:

○ Non-reentrant exploits exist (e.g., from flash loans)
● Are all methods the same on all “EVM-Compatible” / Solidity

supporting blockchains? No:
○ Various rollups, let alone other layer one blockchains,

change the semantics of op-codes

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentation

Results

5

We want to be able to restrict interactions at various levels. We…
● Review existing solutions for reentrancy
● Generalize approaches to sets of functions and dApps
● Describe read-only reentrancy
● Restrict interactions within the same…

○ Same transaction
○ Block or time duration

● Highlight future work

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentation

Outline

6

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentation

Outline

7

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

Existing Solutions

● Checks-Effects Interaction pattern
○ Design pattern to mitigate effects of reentrancy,

even if it occurs
● Gas limiting external calls

○ Don’t supply enough gas to reenter; hardcoding
values that may change

● Non-reentrant modifier on functions (e.g., from
OpenZeppelin)
○ Uses a mutex to ensure non-reentrancy
○ Always writes (cannot be used for view function)

Temporarily Restricting Solidity Smart Contract Interactions 8

This is place that hold a title of the presentation

Outline

9

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

Sets of Functions and dApps

● Modifiers don’t need to be limited to
single functions – they can be shared

● Shared modifiers mean protection
across entire dApps

● Can use multiple locks to allow
some reentrancy

● Can use the same lock for multiple
contracts

● Protecting opposite actions can be
valuable, especially in conjunction
with duration-based locks.

Temporarily Restricting Solidity Smart Contract Interactions 10

This is place that hold a title of the presentation

Outline

11

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentationTemporarily Restricting Solidity Smart Contract Interactions

Motivation
12

● Description of the Sentiment
protocol incident of 2023

● “Read-only” reentrancy: a
read-only function
of the dApp was entered at a bad
time; involved other dApps

● $1M loss of cryptocurrency
● Fixed after the issue (but that’s too

late)

Read-only Reentrancy

● Not solved properly ideally we don’t want to just write via
mutexes everywhere – we want view functions
○ EIP-1153 introduces transient storage which is a

middle ground; not yet well studied or exemplified.
● Difficult to reason about; often overlooked by auditors
● May need more “heavyweight” properties or invariants;

may be most costly in other ways.

Temporarily Restricting Solidity Smart Contract Interactions 13

This is place that hold a title of the presentation

Outline

14

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

Same Transaction

● Allow two or more calls
within the same block
but not within the
same transaction

● Uses warm and cold
memory access

Temporarily Restricting Solidity Smart Contract Interactions 15

This is place that hold a title of the presentation

Outline

16

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

Block or Time-Based Duration

● Disallow two or more
transactions per account
within a time period or
number of blocks

● Can be powerful for
“opposite actions” like
deposit and withdrawal; no
flash loans

● No meaningful difference
on Ethereum, but different
on some layer two
networks

Temporarily Restricting Solidity Smart Contract Interactions 17

This is place that hold a title of the presentation

Outline

18

● Existing solutions
● Sets of Functions and dApps

○ Read-only reentrancy example
● Duration-based restrictions

○ Same transactions
○ block or time based duration

● Future work

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentation

Conclusion & Future Work

19

We explicitly introduced…
● read-only reentrancy attacks
● Same transaction, block, or time duration level restrictions
● Generalize approaches to sets of functions and dApps

Future work:
● Analysis of changes for opcodes on layer two networks
● Other approaches to counter read-only reentrancy
● Empirical analysis of these approaches (which are more

likely to break composability? gas cost trade-offs?)
● EIP-1153 changes and their security implications

Temporarily Restricting Solidity Smart Contract Interactions

This is place that hold a title of the presentation

Thank you!
jan@zircuit.com

