

# End-Vertices of AT-free Bigraphs

Jan Gorzny<sup>1</sup> & Jing Huang<sup>2</sup>

<sup>1</sup>David R. Cheriton School of Computer Science

University of Waterloo

jgorzny@uwaterloo.ca

<sup>2</sup>Department of Mathematics

University of Victoria

huangj@uvic.a



**UNIVERSITY OF WATERLOO**  
**FACULTY OF MATHEMATICS**  
David R. Cheriton School  
of Computer Science

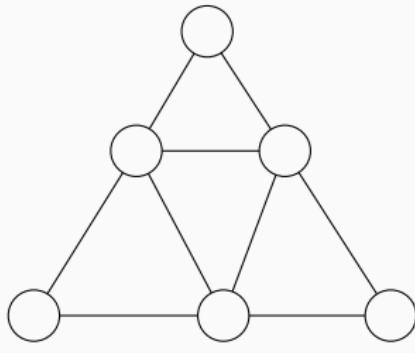


**University  
of Victoria**

- 1 Introduction
- 2 BFS End-Vertex Problem for AT-Free Bigraphs
- 3 DFS End-Vertex Problem for AT-Free Bigraphs
- 4 LBFS End-Vertex Problem for AT-Free Bigraphs
- 5 MNS End-Vertex Problem for AT-Free Bigraphs
- 6 Conclusion

# Graph Searches

A graph *search* is a systematic way of visiting each vertex in a graph.



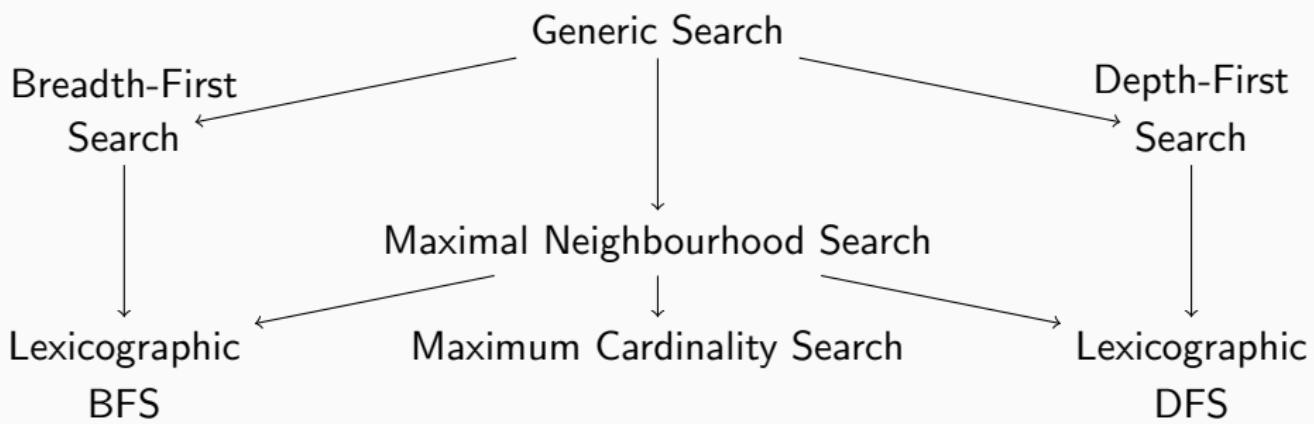
a graph  $G$

$$\sigma = v_1, \dots, v_n$$

an *ordering* of  $G$

Applications to e.g., connectivity (BFS, DFS) [CLRS09], recognition of graph classes, computation of graph parameters, and detection of certain graph structures (LBFS) [Cor04], computing maximal cardinality matchings on cocomparability graphs (LDFS) [MNN18]

# Relationship Between Searches



## End-Vertex Problem for $S$ :

**Instance:** A graph  $G = (V, E)$ , and a vertex  $t$ .

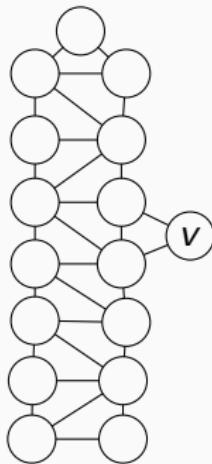
**Question:** Is there an ordering  $\sigma$  generated by  $S$  of  $V$  such that  $\sigma(n) = t$ ?

## Understanding End-Vertices is Helpful I

- End-vertices of LBFS on chordal graphs are simplicial [RTL76]

Led to recognition algorithms for this graph class via a *perfect elimination ordering*:  $\forall v$  and  $N(v)$  that are after  $v$  are a complete graph

...but not every simplicial vertex is an LBFS end-vertex:



## Understanding End-Vertices is Helpful II

- End-vertices of LBFS of an interval graph are precisely the simplicial and admissible vertices [COS09]

Led to recognition algorithms for this graph class: six executions of LBFS, tie-breaking based on the previous execution when possible.

- End-vertices of LDFS on cocomparability graphs starts a hamiltonian path, if one exists [CDH13]

# Determining If A Vertex is An End Vertex Is Sometimes Easy

For generic search - using a set rather than a queue -  $v$  is end-vertex iff:

- $v$  is not a cut-vertex.

Can test this quickly (DFS).

For LBFS on interval graphs  $v$  is end-vertex iff:

- $v$  is simplicial and admissible.

# End-Vertex Complexity

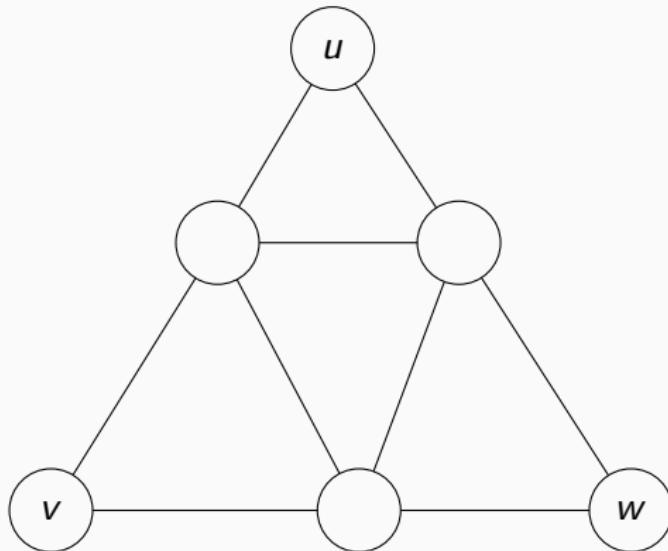
| Class           | BFS                | DFS                             | LBFS                            | LDFS                            | MNS                             | MCS                             |
|-----------------|--------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| All Graphs      | NPC                | NPC                             | NPC                             | NPC                             | NPC                             | NPC<br>[BDK <sup>+</sup> 19]    |
| Weakly Chordal  | NPC<br>[CHM14]     | NPC                             | NPC<br>[CKL10]<br>[CRWW19]      | NPC<br>[CHM14]                  | NPC<br>[BDK <sup>+</sup> 19]    | NPC<br>[CRWW19]                 |
| Chordal         | ?                  | NPC                             | ?                               | Linear<br>[CRWW19]              | Linear<br>[BDK <sup>+</sup> 19] | Poly.<br>[CRWW19]               |
| Interval        | Linear<br>[CRWW19] | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[CKL10]               | Linear                          | Linear<br>[BDK <sup>+</sup> 19] | Poly.                           |
| Unit Interval   | Linear             | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[CKL10]               | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[BDK <sup>+</sup> 19] |
| Split           | Poly.<br>[CHM14]   | NPC<br>[CHM14]                  | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[BDK <sup>+</sup> 19] | Linear<br>[BDK <sup>+</sup> 19] |
| Bigraph         | NPC<br>[CHM14]     | NPC<br>[Gor15]                  | NPC<br>[GH17]                   | ?                               | ?                               | ?                               |
| AT-Free Bigraph | <b>Poly.</b>       | <b>Linear</b>                   | Poly. [GH17]<br>→Linear         | ?                               | <b>Poly.</b>                    | ?                               |

Complexity results for the end-vertex problem. Bold results are new.

# Asteroidal Triples

## Definition (Asteroidal Triple)

An *asteroidal triple* is a triple of vertices  $(u, v, w)$  such that between any two of them, there is a path that does not intersect the closed neighbourhood of the third.



# AT-Free Bigraphs

## Definition (AT-Free Bigraphs)

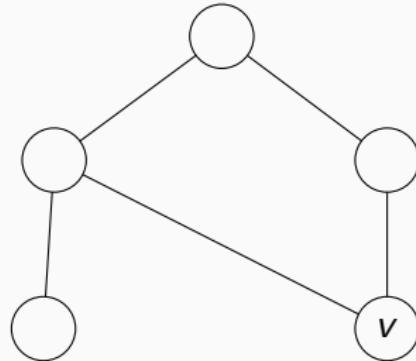
A graph  $G$  is an *AT-free Bigraph* if it is bipartite and asteroidal-triple free.

These are exactly the **bipartite permutation** graphs and the **proper interval bipartite** graphs [HH04]

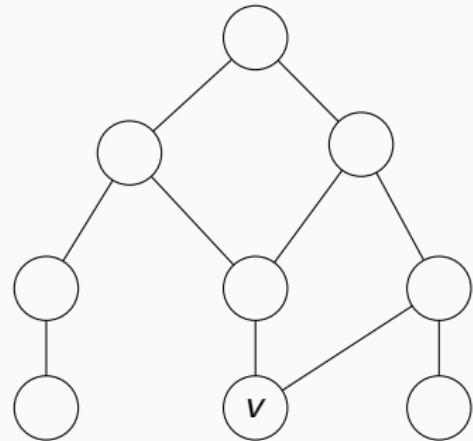
# Plan

- Introduction
- BFS End-Vertex Problem for AT-Free Bigraphs
- DFS End-Vertex Problem for AT-Free Bigraphs
- LBFS End-Vertex Problem for AT-Free Bigraphs
- MNS End-Vertex Problem for AT-Free Bigraphs
- Conclusion

# BFS on AT-Free Bigraphs I



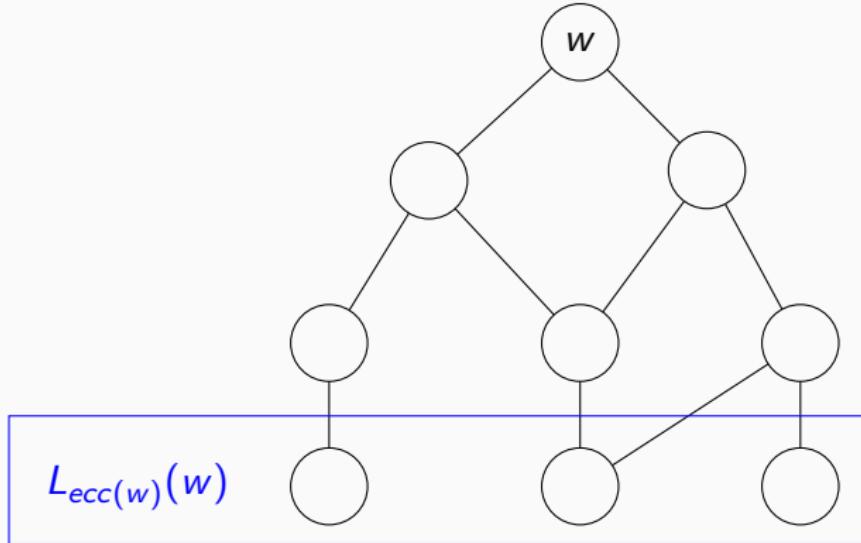
$v$  is not a LBFS end-vertex, but it is  
a BFS end-vertex.



$v$  is not a BFS end-vertex.

# Eccentricity

For a vertex  $v$ , the *eccentricity* of  $v$  is  $\max_{u \in V} d(u, v)$ .

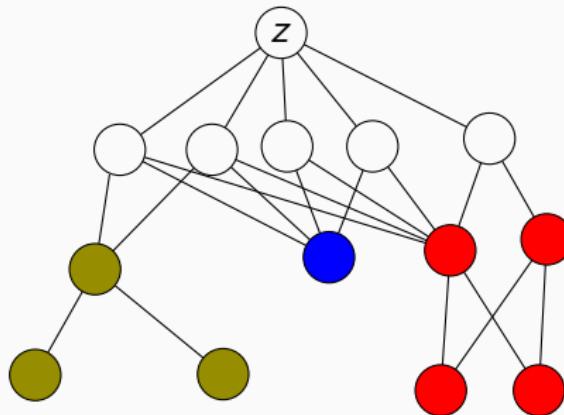


If  $v$  is an end-vertex for BFS, it must be the case that there is a  $w$  such that  $d(w, v) = \text{ecc}(w)$ .

# Layers of AT-Free Bigraphs

## Proposition ([GH17])

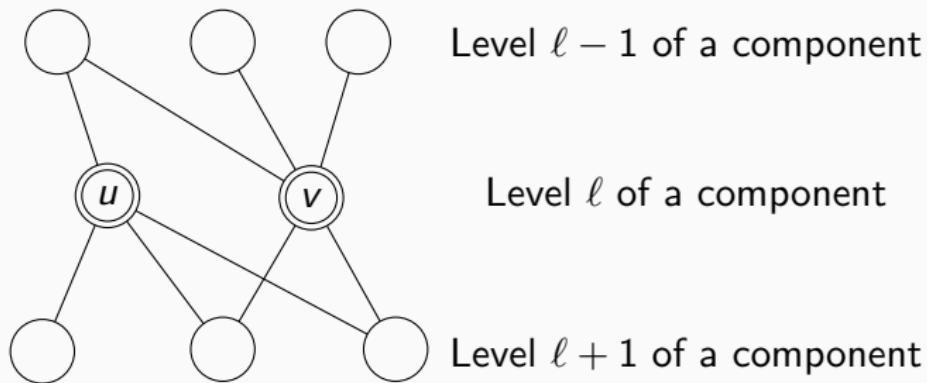
Let  $G$  be a connected AT-free bigraph and  $z$  be a vertex of  $G$ . If  $\text{ecc}(z) \geq 3$ , then  $G - N[z]$  has at most two deep components.  $\square$



Red, olive are deep; blue is not.  
deep components have  $> 1$  vertex

## Proposition ([GH17])

Let  $G$  be an AT-free bigraph and  $z$  be a vertex of  $G$ . Suppose that  $C$  is a connected component of  $G - N[z]$  and that  $u, v \in L_\ell(z)$  are two vertices in  $C$ . The neighbourhoods of  $u$  and  $v$  are comparable on the levels above and below them.



# BFS End-Vertices of AT-Free Bigraphs

## Theorem

Let  $G = (V, E)$  be an AT-free bigraph, and  $v \in V$  where

$3 \leq \text{height}(v) < \infty$ . Let  $w \in V$  be such that  $d(w, v) = \text{ecc}(w)$ . The vertex  $v$  is a BFS end-vertex if and only if, either

- $G - N[w]$  has a single deep component; or
- $G - N[w]$  has two deep components  $C_1$  and  $C_2$ , where without loss of generality  $v \in C_1$ , and there is a set  $X \subseteq N(w) \cap N(C_2)$  such that for each  $u \in Y(v, w)$ ,  $d(X, v) \geq d(X, u)$  and  $d(X, u') = \text{ecc}(w) - 1$  for all  $u' \in Z(v, w)$ .

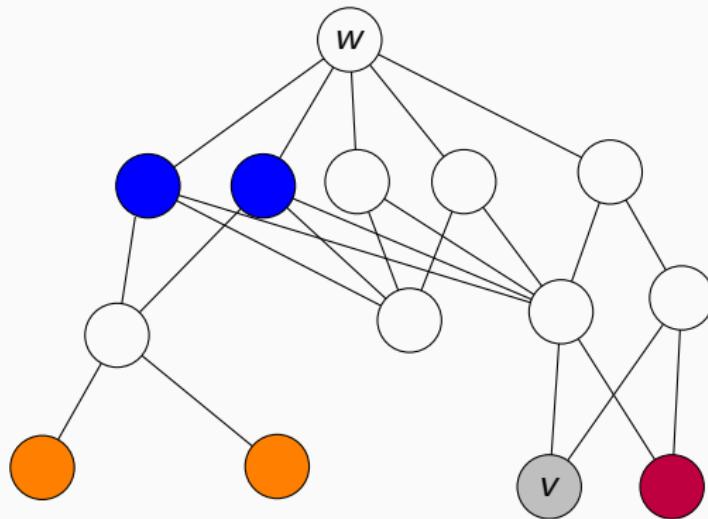
$G - N[w]$  has a single deep component follows from “layers” proposition.

## Theorem

The BFS end-vertex problem is in  $P$  for AT-free bigraphs.

## BFS End-Vertices of AT-Free Bigraphs

There is a set  $X \subseteq N(w) \cap N(C_2)$  such that for each  $u \in Y(v, w)$ ,  $d(X, v) \geq d(X, u)$  and  $d(X, u') = \text{ecc}(w) - 1$  for all  $u' \in Z(v, w)$ .

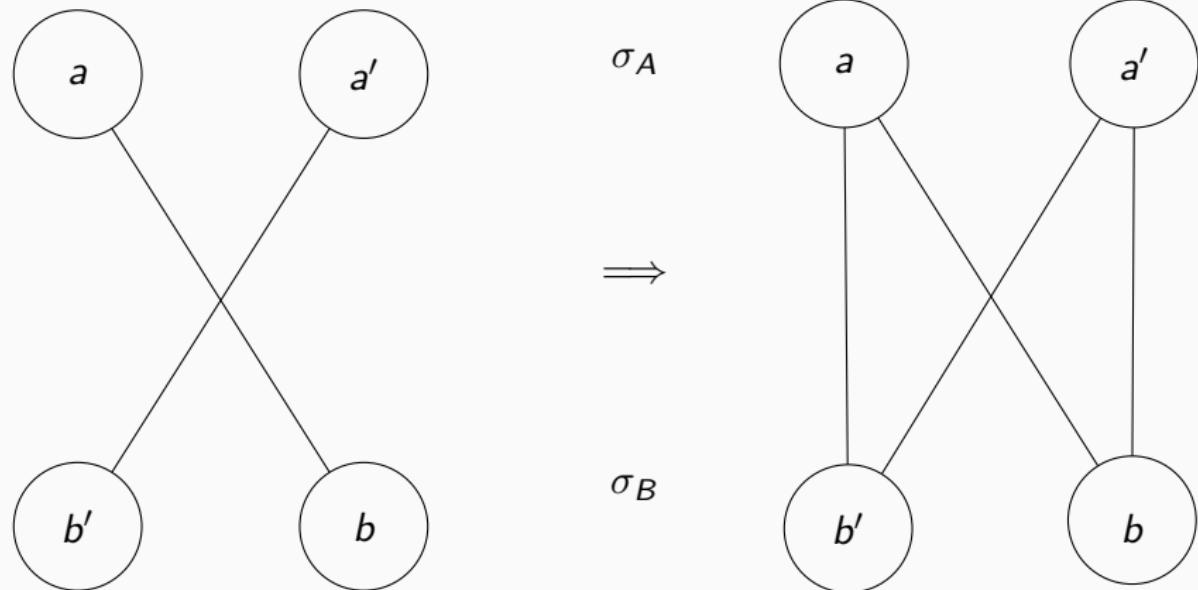


# Plan

- Introduction
- BFS End-Vertex Problem for AT-Free Bigraphs
- DFS End-Vertex Problem for AT-Free Bigraphs
- LBFS End-Vertex Problem for AT-Free Bigraphs
- MNS End-Vertex Problem for AT-Free Bigraphs
- Conclusion

## Strong Ordering

A *strong ordering*  $(\sigma_A, \sigma_B)$  of a bipartite graph  $G = (A, B, E)$  consists of an ordering  $\sigma_A$  of  $A$  and an ordering  $\sigma_B$  of  $B$  such that for all  $ab, a'b' \in E$ , where  $a, a' \in A$  and  $b, b' \in B$ ,  $a <_{\sigma_A} a'$  and  $b' <_{\sigma_B} b$  implies that  $ab' \in E$  and  $a'b \in E$ .



# AT-Free Bigraphs Have Strong Orders with the Adjacency Property

## Theorem ([SBS87])

The following statements are equivalent for any bigraph  $G = (A, B, E)$ .

- $G$  has a strong ordering.
- $G$  is a AT-free.

□

Moreover, there exists a strong ordering of  $G$  which has the adjacency property.

# Helper Theorems

## Theorem ([KLM15])

Let  $G$  be a connected graph, and let  $t$  be a vertex of  $G$ . Then  $t$  is a DFS end-vertex of  $G$  if and only if there is  $X \subseteq V(G)$  such that  $N_G[t] \subseteq X$  and  $G[X]$  has a Hamiltonian path with endpoint  $t$ .  $\square$

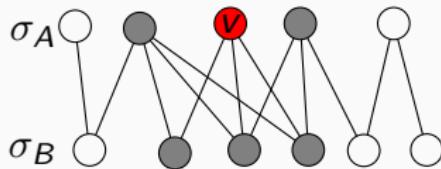
## Theorem ([BK85])

If  $G$  is an AT-free bigraph, then  $G$  has a Hamiltonian cycle if and only if for each  $1 \leq i \leq |A|$ , if there is a  $1 \leq j \leq |B|$  such that  $a_i b_j \in E$  and  $a_{i+1} b_{j+1} \in E$ , then  $a_i b_{j+1} \in E$ , and  $a_{i+1} b_j \in E$ .

# DFS End-Vertices on AT-Free Bigraphs

## Corollary

Let  $(\sigma_a, \sigma_b)$  be a strong ordering of an AT-free bigraph. Without loss of generality, assume  $v \in A$ . Let  $N(v) = \langle b_\alpha, \dots, b_\beta \rangle$  in  $\sigma_B$ .  $v$  is a DFS-end vertex if and only if there is a set  $A' \subseteq \langle a_i, \dots, a_j \rangle$  such that  $a_i \leq_{\sigma_A} a, a \leq_{\sigma_A} a_j$ , and  $G' = G[A' \cup N(v)]$  is an induced subgraph of  $G$  where  $|A'| = |N(v)|$  and  $G'$  has a Hamiltonian path ending at  $v$ .



## Theorem

The DFS end-vertex problem has a linear-time solution for AT-free bigraphs.

# Plan

- 1 Introduction
- 2 BFS End-Vertex Problem for AT-Free Bigraphs
- 3 DFS End-Vertex Problem for AT-Free Bigraphs
- 4 LBFS End-Vertex Problem for AT-Free Bigraphs
- 5 MNS End-Vertex Problem for AT-Free Bigraphs
- 6 Conclusion

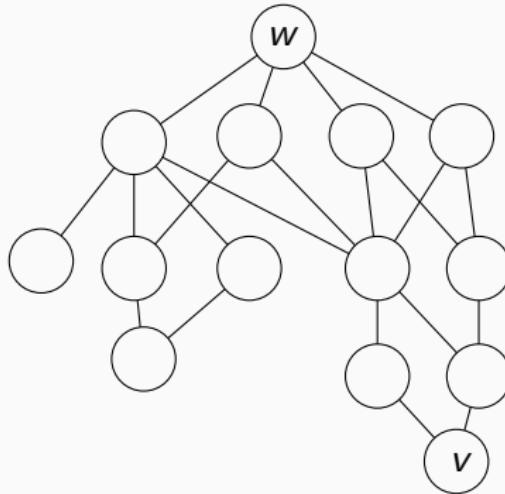
# Characterization

## Theorem ([GH17])

Let  $G$  be a connected AT-free bigraph and  $v$  be a vertex of  $G$ . Then  $v$  is the end-vertex of an LBFS if and only if there exists a vertex  $w$  such that, for every eccentric vertex  $u$  of  $w$ ,  $N(u) \supseteq N(v)$ . □

# Understanding the Characterization I

“there exists a vertex  $w$  such that, for every eccentric vertex  $u$  of  $w$ ,  $N(u) \supseteq N(v)$ ”



...But some vertices are LBFS ends even with two “eccentric deep components”!

## Theorem

Let  $G$  be a connected AT-free bigraph of  $\text{diam}(G) = k$ . Suppose that  $v$  with  $\text{ecc}(v) = k - 1$  is the end-vertex of LBFS of  $G$ . If  $w$  is the first vertex of  $L_r(v)$  where  $r = \lceil \frac{\text{ecc}(v)+3}{2} \rceil$  in an LBFS ordering of  $G$  that begins at  $v$ , then for every eccentric vertex  $u$  of  $w$ ,  $N(u) \supseteq N(v)$ .

# Linear Time Solution

---

**Algorithm 1:** Linear Time LBFS End-Vertex for AT-Free Bigraphs

---

**Input:** An AT-free graph  $G$  with vertex  $v$ .

**Output:** A vertex  $w$  such that  $N(u) \supseteq N(v)$  for every eccentric vertex  $u$  of  $w$  in which case  $v$  is the end-vertex of  $G$ , or else  $v$  is not the end-vertex of LBFS of  $G$ .

- 1 Run LBFS beginning at  $v$  to find an LBFS ordering  $\tau$ . Let  $w_1 = \tau(n)$  and  $w_2$  be the first vertex of  $L_r(v)$  in  $\tau$  where  $r = \lceil \frac{\text{ecc}(v)+3}{2} \rceil$
- 2 Run LBFS beginning at  $w_1$  to find all eccentric vertices of  $w_1$ . If  $N(u) \supseteq N(v)$  for all eccentric vertices  $u$  of  $w_1$ ,  $v$  is the end-vertex of LBFS of  $G$ .
- 3 Run LBFS beginning at  $w_2$  to find all eccentric vertices of  $w_2$ . If  $N(u) \supseteq N(v)$  for all eccentric vertices  $u$  of  $w_2$ ,  $v$  is the end-vertex of  $G$ ; otherwise  $v$  is not the end-vertex of LBFS of  $G$ .

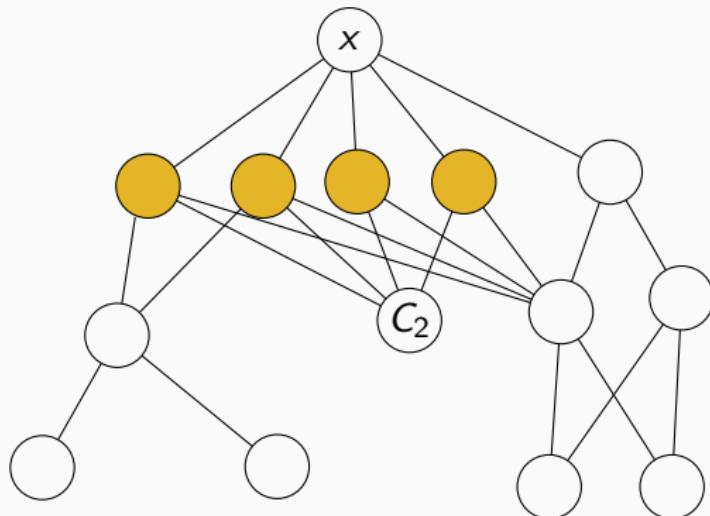
---

# Plan

- 1 Introduction
- 2 BFS End-Vertex Problem for AT-Free Bigraphs
- 3 DFS End-Vertex Problem for AT-Free Bigraphs
- 4 LBFS End-Vertex Problem for AT-Free Bigraphs
- 5 MNS End-Vertex Problem for AT-Free Bigraphs
- Conclusion

## Definition ([BBBS10])

Let  $G = (V, E)$  be a graph and  $x \in V$ . Let  $C_1, \dots, C_k$  be the connected components of  $G(V - N[x])$ . The *substars* of  $x$  are the elements of  $N_G(C_i)$  for each  $i$ . □



## MNS End-Vertices

### Theorem ([BBBS10])

Let  $G$  be a connected **chordal** and let  $x$  be a vertex of  $G$ . Then the following statements are equivalent:

- the substars of  $x$  are totally ordered by inclusion;
- $x$  is an MNS-end vertex.

### Theorem

Let  $G$  be a connected **AT-free bigraph** and let  $x$  be a vertex of  $G$ . Then the following statements are equivalent:

- the substars of  $x$  are totally ordered by inclusion;
- $x$  is an MNS-end vertex.

### Theorem

The MNS end-vertex problem is in  $P$  for AT-free bigraphs.

# Plan

- 1 Introduction
- 2 BFS End-Vertex Problem for AT-Free Bigraphs
- 3 DFS End-Vertex Problem for AT-Free Bigraphs
- 4 LBFS End-Vertex Problem for AT-Free Bigraphs
- 5 MNS End-Vertex Problem for AT-Free Bigraphs
- 6 Conclusion

# Conclusion

| Class           | BFS          | DFS           | LBFS                                     | LDFS | MNS          | MCS |
|-----------------|--------------|---------------|------------------------------------------|------|--------------|-----|
| Bigraph         | NPC [CHM14]  | NPC [Gor15]   | NPC [GH17]                               | ?    | ?            | ?   |
| AT-Free Bigraph | <b>Poly.</b> | <b>Linear</b> | Poly. [GH17] $\rightarrow$ <b>Linear</b> | ?    | <b>Poly.</b> | ?   |

## • Future Work

- MCS, LDFS end-vertex complexity on AT-free bigraphs?
- LDFS, MNS, MCS end-vertex complexity on general bigraphs?

Thank you.

Questions? Comments?

[jgorzny@uwaterloo.ca](mailto:jgorzny@uwaterloo.ca)

## References i

- ▶ [BBBS10] Anne Berry, Jean RS Blair, Jean-Paul Bordat, and Genevieve Simonet, *Graph extremities defined by search algorithms*, Algorithms **3** (2010), no. 2, 100–124.
- ▶ [BDK<sup>+</sup>19] Jesse Beisegel, Carolin Denkert, Ekkehard Khler, Matja Krnc, Nevena Piva, Robert Scheffler, and Martin Strehler, *On the End-Vertex Problem of Graph Searches*, Discrete Mathematics & Theoretical Computer Science **vol. 21 no. 1, ICGT 2018** (2019).
- ▶ [BK85] Andreas Brandstädt and Dieter Kratsch, *On the restriction of some NP-complete graph problems to permutation graphs*, Fundamentals of Computation Theory (FCT) (Lothar Budach, ed.), LNCS, vol. 199, Springer, 1985, pp. 53–62.

- ▶ [CDH13] Derek G. Corneil, Barnaby Dalton, and Michel Habib, *Ldfs-based certifying algorithm for the minimum path cover problem on cocomparability graphs*, SIAM J. Comput. **42** (2013), no. 3, 792–807.
- ▶ [CHM14] Pierre Charbit, Michel Habib, and Antoine Mamcarz, *Influence of the tie-break rule on the end-vertex problem*.
- ▶ [CKL10] Derek G Corneil, Ekkehard Köhler, and Jean-Marc Lanlignel, *On end-vertices of lexicographic breadth first searches*, Discrete Applied Mathematics **158** (2010), no. 5, 434–443.

- ▶ [CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, *Introduction to algorithms, 3rd edition*, MIT Press, 2009.
- ▶ [Cor04] Derek G. Corneil, *Lexicographic breadth first search - A survey*, 30th International Workshop on Graph-Theoretic Concepts in Computer Science (WG) (Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, eds.), LNCS, vol. 3353, Springer, 2004, pp. 1–19.
- ▶ [COS09] Derek G Corneil, Stephan Olariu, and Lorna Stewart, *The LBFS structure and recognition of interval graphs*, SIAM Journal on Discrete Mathematics **23** (2009), no. 4, 1905–1953.

- ▶ [CRWW19] Yixin Cao, Guozhen Rong, Jianxin Wang, and Zhifeng Wang, *Graph searches and their end vertices*, arXiv preprint arXiv:1905.09505 (2019).
- ▶ [GH17] Jan Gorzny and Jing Huang, *End-vertices of LBFS of (AT-free) bigraphs*, Discrete Applied Mathematics **225** (2017), 87–94.
- ▶ [Gor15] Jan Gorzny, *On end vertices of search algorithms*, Master's thesis, University of Victoria, Victoria, BC, Canada, 2015.
- ▶ [HH04] Pavol Hell and Jing Huang, *Interval bigraphs and circular arc graphs*, Journal of Graph Theory **46** (2004), no. 4, 313–327.

- ▶ [KLM15] Dieter Kratsch, Mathieu Liedloff, and Daniel Meister, *End-vertices of graph search algorithms*, 9th International Conference on Algorithms and Complexity (CIAC) (Vangelis Th. Paschos and Peter Widmayer, eds.), LNCS, vol. 9079, Springer, 2015, pp. 300–312.
- ▶ [MNN18] George B. Mertzios, André Nichterlein, and Rolf Niedermeier, *A linear-time algorithm for maximum-cardinality matching on cocomparability graphs*, SIAM Journal on Discrete Mathematics **32** (2018), no. 4, 2820–2835.
- ▶ [RTL76] Donald J Rose, R Endre Tarjan, and George S Lueker, *Algorithmic aspects of vertex elimination on graphs*, SIAM Journal on computing **5** (1976), no. 2, 266–283.

- ▶ [SBS87] Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart, *Bipartite permutation graphs*, Discrete Applied Mathematics **18** (1987), no. 3, 279–292.