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Our Problem: Imbalance

o A linear layout problem: given a graph G, embed the vertices on a
path of length |V(G)| and minimize some function f().

o In our case: f represents the sum of the difference of each vertex's
neighbourhood to its left and right in the embedding.

o First introduced by Biedl et al. [BCGT05]; various applications in
graph drawing [Kan96, KH97, PT98, Wo0003, Woo04].

o NP-complete for split graphs and on bipartite graphs (A < 6); it has
a linear solution on trees and proper interval graphs [BCG105, 7].
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Imbalance Visualized
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Imbalance Minimization [BCG'05]

Definition

Let G = (V,E) be a graph and o an ordering of V. For v € V, let
pred,(v) = |o<, N N(v)| and succ,(v) = |o=, N N(v)|. The imbalance
of v w.r.t. o, denoted ¢,(v), is |succ,(v) — pred,(v)|. The imbalance
of o isim(c) =Y e, ¢o(v). im(G), the imbalance of G, is the minimum
of im(c’) over all orderings o of V.
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Graph Class Results

NP-Complete All Graphs
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An arrow from class A to class B indicates that class A is contained within
class B. Pink classes are in this work.
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() Bipartite Permutation Graphs
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Bipartite Permutation Graphs

A graph is a permutation graph if it is the intersection graph of lines
whose end points are on two parallel lines. A graph is a bipartite
permutation graph if it is both a bipartite graph and a permutation graph.

Proper interval bipartite graphs are bipartite permutation graphs [HHO04].

Complete bipartite graphs are bipartite permutation graphs.
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Strong Ordering

A strong ordering (oa,0p) of a bipartite graph G = (A, B, E) consists of
an ordering o4 of A and an ordering og of B such that for all ab,a’b’ € E,
where a,a’ € Aand b, b’ € B, a <,, 3’ and b’ <,, b implies that ab’ € E
and a'b€ E.
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Orderings of Bipartite Permutation Graphs

Theorem ([SBS87])
The following statements are equivalent for any bipartite graph
G =(A,B,E).
Q G is a bipartite permutation graph.
Q G has a strong ordering.
Q There exists an ordering of A which has the adjacency property and

the enclosure property.

A strong ordering of a bipartite permutation graph can be computed in
linear time [CHK99].
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Enclosure and Adjacency Properties

elade
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Strong Orderings of Bipartite Permutation Graphs

Lemma ([SBS87])

Let (64, 0B) be a strong ordering of a connected bipartite permutation
graph G = (A, B, E). Then both * and o8 have the adjacency property
and the enclosure property.
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Imbalance on General Bipartite Graphs

Theorem ([BCG05])

Given a bipartite graph G = (A, B, E) and a fixed vertex-ordering o” of A,
there is a linear time algorithm that finds an ordering of G which is

imbalance-minimal with respect to all orderings that agree with c*.
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Imbalance on Bipartite Permutation Graphs

Theorem

Let (04, 08) be a strong ordering of a bipartite permutation graph

G = (A, B,E). There is an ordering o of G with im(c) = im(G) and

oa = oA
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Proof Sketch

o Handle some small highly structured cases (e.g., diam(G) < 2).
o Induction on the size of the graph:

o Given a graph G = (A, B) with n vertices, create G’ by removing a;
and G” by removing b;.

o Get optimal orderings which satisfy the properties for G’ and G”,
identify v with the same N(v) split in both orderings

o Glue orderings together at v
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Imbalance on Bipartite Permutation Graphs

Corollary

If G is a bipartite permutation graph, im(G) can be computed in linear

time.

Proof.
A strong ordering of G = (A, B, E) can be obtained in linear time
[CHK99]. Applying Theorem 3 using 0 generates an optimal ordering

relative to o in linear time, which is optimal by Theorem 4. O
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() Threshold Graphs
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Split Graphs

Clique

Independent Set

A split graph, with its split partition indicated.
Imbalance is NP-complete on split graphs [?].

J. Gorzny Imbalance: Threshold, Bipartite Permutation 13 December 2020



Threshold Graphs

A graph is a threshold graph if and only if it has a split partition (C, /)
such that vertices of | (and equivalently the vertices of C) can be ordered
by neighbourhood inclusion.

Such a split partition is called a threshold partition; computing a threshold
partition takes linear time [?].
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Threshold Partition Visualized

A threshold graph G with levels of its threshold partition indicated.
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Key Lemma

Lemma

Let G be a threshold graph on ¢ > 3 levels and let o be an ordering of G.
Suppose that either |C1| > 2, or |Ci| =1 and o is an ordering of G such

that Iy appears as the first |I1| vertices of o. Then there is an ordering o’
such that im(c’) < im(o) and ¢; <, ¢j for ¢; € C; and ¢j € C; whenever

j>i.
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Proof Sketch

We define a partial order < on orderings of G, for which each <-minimal
ordering has no inversions (cj7 ¢;) where j > i, ¢ e (,ce(,and
¢ <g GCi.

We define the ordering < as follows: if inverted(7) < inverted(c), then

T<Oo.

We then show that for any o in which a pair (cj, ¢;) such that j > i,
¢ € C, ¢i € C, and ¢ <, ¢; appears, there exists m with 7 < o, and
im(m) < im(o).
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Proof Sketch Il

Given an ordering o, we will say that a pair (cj, ¢;) is an inverted pair if
Jj>1iand ¢ <, ¢ and ¢ € G, ¢; € C; an inverted pair is a bad pair if it
is also the case that N(c;) N o~ = N(cj) N o~ For an ordering o, let
inverted(o) be the number of inverted pairs in o.

We proceed by contradiction.
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Proof Sketch Il1I

Let (cj, c;) be the inverted pair that has both ¢; and ¢; as far right as
possible - this actually implies that o contains a bad pair.

Let (cj, c;) be the bad pair that places ¢; as far right as possible and
minimizes the number of vertices between ¢; and ¢; in 0.

Establish that the vertices between ¢; and ¢;j are in G or /...
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Proof Sketch IV

...either we can move one of those vertices, or we have these two
constraints:

IN(g) N L] = [N(g) N (MU {ci} UR)| = [M]. (1)
N(e) N (LU{G}UM)| < IN(G) N RI+(IM[+1),  (2)
Thus, we have
IN(ci) VR = [N(ci) N (LU {g}UM)| - M| -1 by (2)
= [N(e) O L[+ {g}| + M = [M] -1
= [N(ei) N L]
> |N(¢j) N'L|
> [N(¢j) N (MU{ci} UR)| —[M]| by (1)

> [N(¢j) N Rl + M| + [{ci}| = M| > [N(¢;) N R|

which is a contradiction. O
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Structured Cases

Lemma

Let G be a threshold graph on ¢ > 3 levels such that |C;| = 1. If
|| < |G\ (CiUh)|, then there is an ordering o such that im(c) = im(G)
and |y are the first |l;| vertices of o.

Lemma

Let G be a threshold graph on ¢ > 3 levels such that |C;| = 1. If
|Il| > |G \ (Cl U /1)
im(c’) = im(G) and ¢; <, ¢j for ¢ € C; and ¢j € C; whenever j > i.

, then there is an ordering o' such that
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Putting It All Together

Lemma

If G be a threshold graph, then there is an ordering o’ such that

im(c') = im(G) and ¢; <, ¢j for c; € C; and ¢j € C; whenever j > i.
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The Final Result

Imbalance can be solved in time O(n) for threshold graphs.

Proof.

(Sketch) Let G” = (V/, E’), and construct G’ by adding each edge
(u,v) € E such that u,v € C and subdividing it.

Now the graph is bipartite.

By Lemma 9, at least one optimal ordering o of G is such that o¢c = 7.
Apply the algorithm of Theorem 3 to get an optimal ordering ¢’ of G'. [
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Another Structural Result

Corollary

If G be a threshold graph, then there is an ordering o’ such that
im(c") = im(G) and ¢; <, ¢j for ¢; € Cj and ¢; € C; whenever j > i, and
vi <, Vj for v; € I; and v; € I; whenever j > |.
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() Additional Results
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Parameterized Results

Open ‘ Cliquewidth ]

‘ Twin Cover ‘ Neighbourhood
Diversity

FPT Vertex Cover

An arrow from class A to class B indicates that class A is generalized by
class B.
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Bounded VC Graphs

Use the approach of Cygan et al. [CLP'14] for Cutwidth.

Theorem

Let G be a graph with vertex cover of size k. There is an algorithm to
solve Imbalance in time O(2n®M)). Therefore there is a O(2"/2n°())
time algorithm for Imbalance on bipartite graphs.

Theorem

Imbalance parameterized by the size of the vertex cover does not admit a

polynomial kernel, unless NP C coNP/poly.
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Conclusion

o Future Work
o Imbalance’s complexity on cographs? On trivially perfect graphs?

o Formalization of relationship to cutwidth?

Thank you.
Questions? Comments?

jgorznyQ@uwaterloo.ca
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