

Imbalance on Threshold Graphs and Bipartite Permutation Graphs

Jan Gorzny

David R. Cheriton School of Computer Science

jgorzny@uwaterloo.ca

UNIVERSITY OF WATERLOO
FACULTY OF MATHEMATICS
David R. Cheriton School
of Computer Science

13 December 2020

Plan

1 Introduction

2 Bipartite Permutation Graphs

3 Threshold Graphs

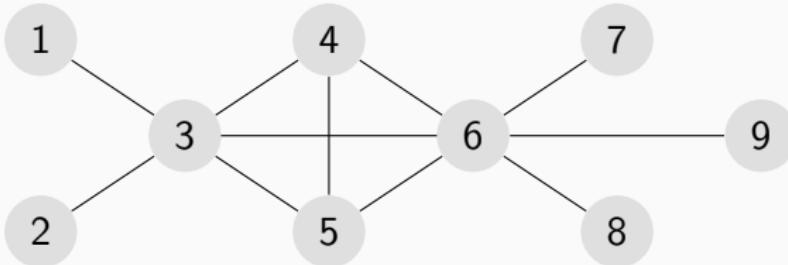
4 Additional Results

5 Conclusion

Our Problem: Imbalance

- A *linear layout* problem: given a graph G , embed the vertices on a path of length $|V(G)|$ and minimize some function $f()$.
 - In our case: f represents the sum of the difference of each vertex's neighbourhood to its left and right in the embedding.
- First introduced by Biedl et al. [BCG⁺05]; various applications in graph drawing [Kan96, KH97, PT98, Woo03, Woo04].
- NP-complete for split graphs and on bipartite graphs ($\Delta \leq 6$); it has a linear solution on trees and proper interval graphs [BCG⁺05, ?].

Imbalance Visualized



$$\sigma = \langle 1, 2, 3, 4, 5, 6, 7, 8, 9 \rangle$$

$$N(4) = \{3, 5, 6\} = \langle 1, 2, \boxed{3}, 4, \boxed{5, 6}, 7, 8, 9 \rangle$$

$$\phi_{\sigma}(4) = \left| |\{3\}| - |\{5, 6\}| \right| = 1$$

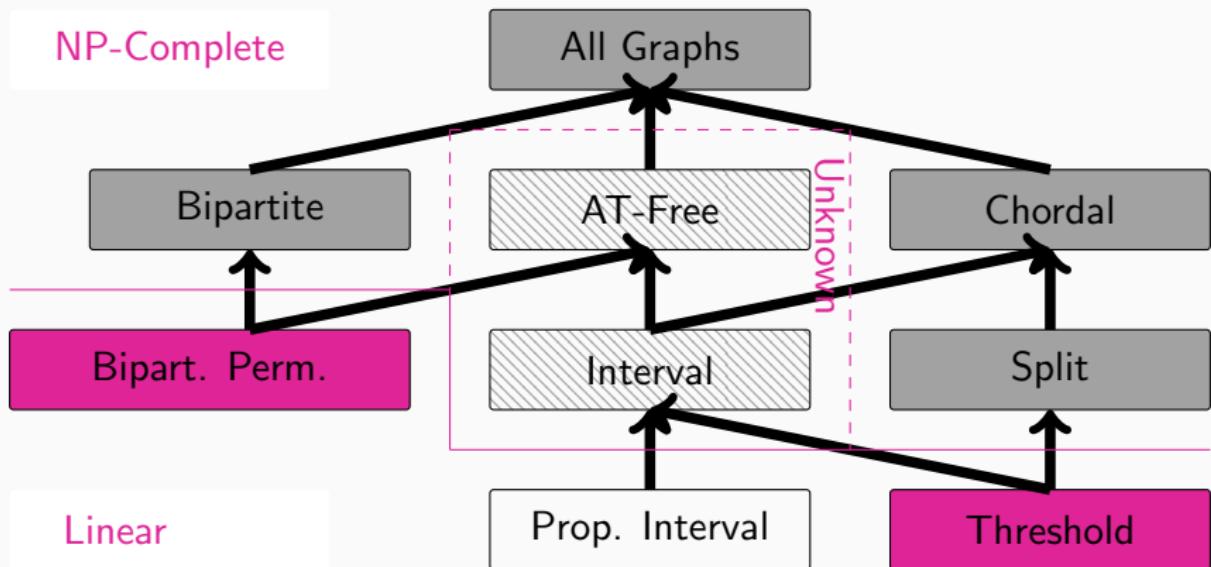
v	1	2	3	4	5	6	7	8	9
$\phi_{\sigma}(v)$	1	1	1	1	1	0	1	1	1

$$im(\sigma) = \sum_{v \in V} \phi_{\sigma}(v) = 8$$

Definition

Let $G = (V, E)$ be a graph and σ an ordering of V . For $v \in V$, let $\text{pred}_\sigma(v) = |\sigma_{<v} \cap N(v)|$ and $\text{succ}_\sigma(v) = |\sigma_{>v} \cap N(v)|$. The imbalance of v w.r.t. σ , denoted $\phi_\sigma(v)$, is $|\text{succ}_\sigma(v) - \text{pred}_\sigma(v)|$. The imbalance of σ is $\text{im}(\sigma) = \sum_{v \in \sigma} \phi_\sigma(v)$. $\text{im}(G)$, the **imbalance** of G , is the minimum of $\text{im}(\sigma)$ over all orderings σ of V .

Graph Class Results



An arrow from class A to class B indicates that class A is contained within class B . Pink classes are in this work.

Plan

1 Introduction

2 Bipartite Permutation Graphs

3 Threshold Graphs

4 Additional Results

5 Conclusion

Bipartite Permutation Graphs

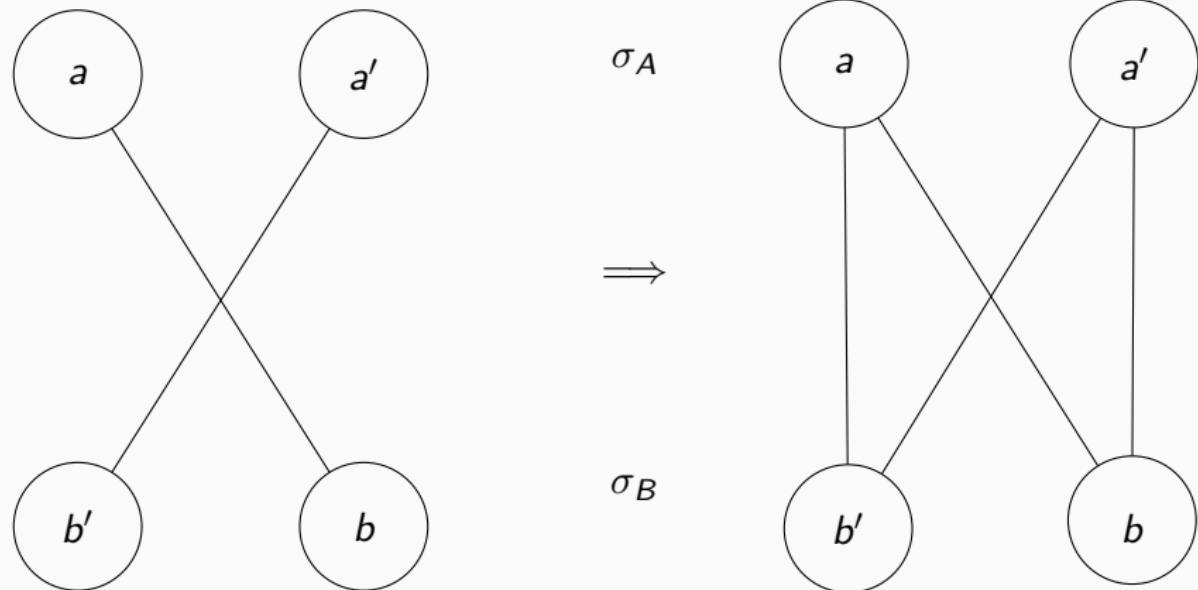
A graph is a *permutation* graph if it is the intersection graph of lines whose end points are on two parallel lines. A graph is a bipartite permutation graph if it is both a bipartite graph and a permutation graph.

Proper interval bipartite graphs are bipartite permutation graphs [HH04].

Complete bipartite graphs are bipartite permutation graphs.

Strong Ordering

A *strong ordering* (σ_A, σ_B) of a bipartite graph $G = (A, B, E)$ consists of an ordering σ_A of A and an ordering σ_B of B such that for all $ab, a'b' \in E$, where $a, a' \in A$ and $b, b' \in B$, $a <_{\sigma_A} a'$ and $b' <_{\sigma_B} b$ implies that $ab' \in E$ and $a'b \in E$.



Orderings of Bipartite Permutation Graphs

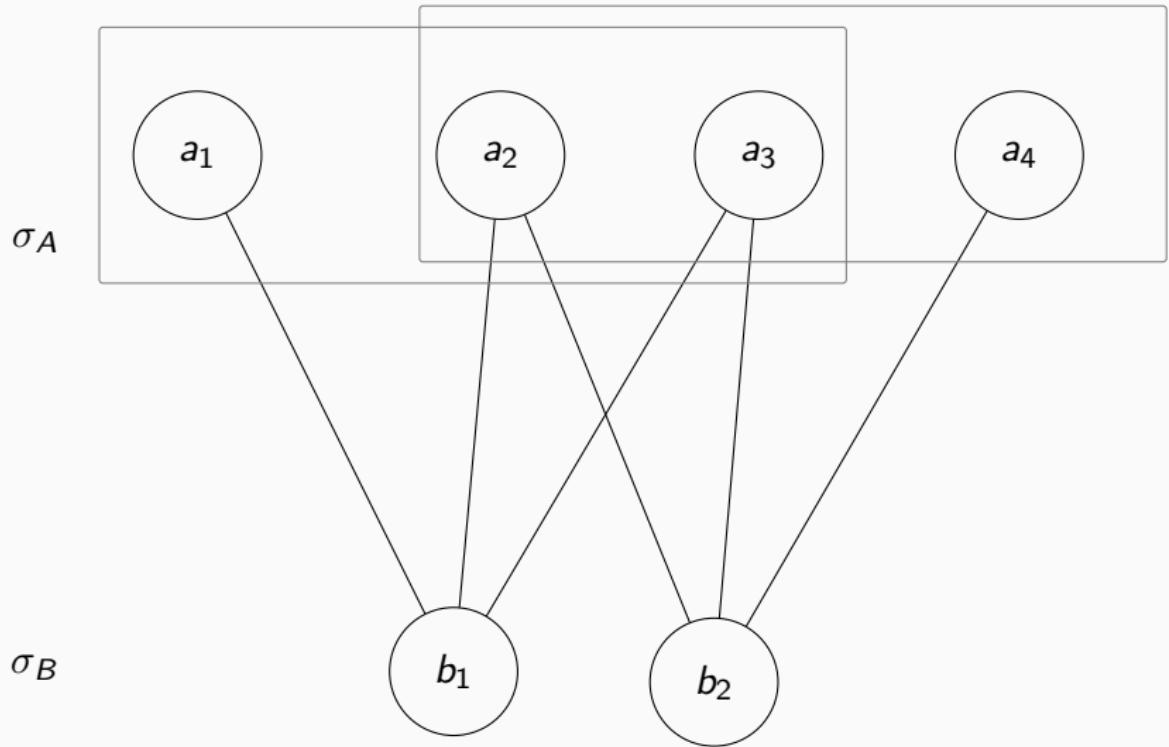
Theorem ([SBS87])

The following statements are equivalent for any bipartite graph $G = (A, B, E)$.

- G is a bipartite permutation graph.
- G has a strong ordering.
- There exists an ordering of A which has the adjacency property and the enclosure property.

A strong ordering of a bipartite permutation graph can be computed in linear time [CHK99].

Enclosure and Adjacency Properties



Strong Orderings of Bipartite Permutation Graphs

Lemma ([SBS87])

Let (σ^A, σ^B) be a strong ordering of a connected bipartite permutation graph $G = (A, B, E)$. Then both σ^A and σ^B have the adjacency property and the enclosure property.

Theorem ([BCG⁺05])

Given a bipartite graph $G = (A, B, E)$ and a fixed vertex-ordering σ^A of A , there is a linear time algorithm that finds an ordering of G which is imbalance-minimal with respect to all orderings that agree with σ^A .

Imbalance on Bipartite Permutation Graphs

Theorem

Let (σ^A, σ^B) be a strong ordering of a bipartite permutation graph $G = (A, B, E)$. There is an ordering σ of G with $im(\sigma) = im(G)$ and $\sigma_A = \sigma^A$.

Proof Sketch

- Handle some small highly structured cases (e.g., $\text{diam}(G) \leq 2$).
- Induction on the size of the graph:
 - Given a graph $G = (A, B)$ with n vertices, create G' by removing a_1 and G'' by removing b_t .
 - Get optimal orderings which satisfy the properties for G' and G'' , identify v with the same $N(v)$ split in both orderings
 - Glue orderings together at v

Corollary

If G is a bipartite permutation graph, $im(G)$ can be computed in linear time.

Proof.

A strong ordering of $G = (A, B, E)$ can be obtained in linear time [CHK99]. Applying Theorem 3 using σ^A generates an optimal ordering relative to σ^A in linear time, which is optimal by Theorem 4. □

Plan

1 Introduction

2 Bipartite Permutation Graphs

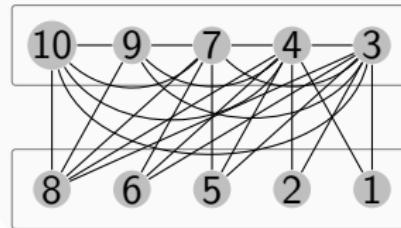
3 Threshold Graphs

4 Additional Results

5 Conclusion

Split Graphs

Clique



Independent Set

A split graph, with its split partition indicated.

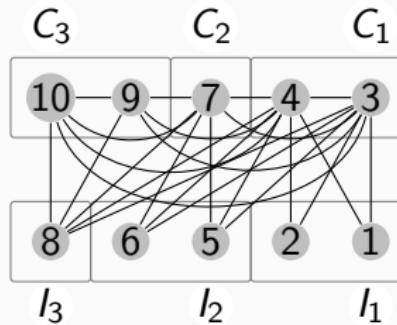
Imbalance is NP-complete on split graphs [?].

Threshold Graphs

A graph is a *threshold graph* if and only if it has a split partition (C, I) such that vertices of I (and equivalently the vertices of C) can be ordered by neighbourhood inclusion.

Such a split partition is called a *threshold partition*; computing a threshold partition takes linear time [?].

Threshold Partition Visualized



A threshold graph G with levels of its threshold partition indicated.

Key Lemma

Lemma

Let G be a threshold graph on $\ell \geq 3$ levels and let σ be an ordering of G . Suppose that either $|C_1| \geq 2$, or $|C_1| = 1$ and σ is an ordering of G such that l_1 appears as the first $|l_1|$ vertices of σ . Then there is an ordering σ' such that $im(\sigma') \leq im(\sigma)$ and $c_i <_{\sigma'} c_j$ for $c_i \in C_i$ and $c_j \in C_j$ whenever $j > i$.

Proof Sketch

We define a partial order \lessdot on orderings of G , for which each \lessdot -minimal ordering has no inversions (c_j, c_i) where $j > i$, $c_j \in C_j$, $c_i \in C_i$, and $c_j <_{\sigma} c_i$.

We define the ordering \lessdot as follows: if $\text{inverted}(\pi) < \text{inverted}(\sigma)$, then $\pi \lessdot \sigma$.

We then show that for any σ in which a pair (c_j, c_i) such that $j > i$, $c_j \in C_j$, $c_i \in C_i$, and $c_j <_{\sigma} c_i$ appears, there exists π with $\pi \lessdot \sigma$, and $\text{im}(\pi) \leq \text{im}(\sigma)$.

Proof Sketch II

Given an ordering σ , we will say that a pair (c_j, c_i) is an *inverted pair* if $j > i$ and $c_j <_{\sigma} c_i$ and $c_j \in C_j$, $c_i \in C_i$; an inverted pair is a *bad pair* if it is also the case that $N(c_i) \cap \sigma_{>c_i} = N(c_j) \cap \sigma_{>c_i}$. For an ordering σ , let $\text{inverted}(\sigma)$ be the number of inverted pairs in σ .

We proceed by contradiction.

Proof Sketch III

Let (c_j, c_i) be the inverted pair that has both c_j and c_i as far right as possible - this actually implies that σ contains a bad pair.

Let (c_j, c_i) be the bad pair that places c_j as far right as possible and minimizes the number of vertices between c_j and c_i in σ .

Establish that the vertices between c_i and c_j are in C_i or I ...

Proof Sketch IV

...either we can move one of those vertices, or we have these two constraints:

$$|N(c_j) \cap L| \geq |N(c_j) \cap (M \cup \{c_i\} \cup R)| - |M|. \quad (1)$$

$$|N(c_i) \cap (L \cup \{c_j\} \cup M)| \leq |N(c_i) \cap R| + (|M| + 1), \quad (2)$$

Thus, we have

$$\begin{aligned} |N(c_i) \cap R| &\geq |N(c_i) \cap (L \cup \{c_j\} \cup M)| - |M| - 1 && \text{by (2)} \\ &= |N(c_i) \cap L| + |\{c_j\}| + |M| - |M| - 1 \\ &= |N(c_i) \cap L| \\ &\geq |N(c_j) \cap L| \\ &\geq |N(c_j) \cap (M \cup \{c_i\} \cup R)| - |M| && \text{by (1)} \\ &\geq |N(c_j) \cap R| + |M| + |\{c_i\}| - |M| > |N(c_j) \cap R| \end{aligned}$$

which is a contradiction. □

Structured Cases

Lemma

Let G be a threshold graph on $\ell \geq 3$ levels such that $|C_1| = 1$. If $|I_1| \leq |G \setminus (C_1 \cup I_1)|$, then there is an ordering σ such that $im(\sigma) = im(G)$ and I_1 are the first $|I_1|$ vertices of σ .

Lemma

Let G be a threshold graph on $\ell \geq 3$ levels such that $|C_1| = 1$. If $|I_1| > |G \setminus (C_1 \cup I_1)|$, then there is an ordering σ' such that $im(\sigma') = im(G)$ and $c_i <_{\sigma'} c_j$ for $c_i \in C_i$ and $c_j \in C_j$ whenever $j > i$.

Putting It All Together

Lemma

If G be a threshold graph, then there is an ordering σ' such that $im(\sigma') = im(G)$ and $c_i <_{\sigma'} c_j$ for $c_i \in C_i$ and $c_j \in C_j$ whenever $j > i$.

The Final Result

Theorem

Imbalance can be solved in time $O(n)$ for threshold graphs.

Proof.

(Sketch) Let $G'' = (V, E')$, and construct G' by adding each edge $(u, v) \in E$ such that $u, v \in C$ and subdividing it.

Now the graph is bipartite.

By Lemma 9, at least one optimal ordering σ of G is such that $\sigma_C = \tau$.

Apply the algorithm of Theorem 3 to get an optimal ordering σ' of G' . \square

Another Structural Result

Corollary

If G be a threshold graph, then there is an ordering σ' such that $im(\sigma') = im(G)$ and $c_i <_{\sigma'} c_j$ for $c_i \in C_i$ and $c_j \in C_j$ whenever $j > i$, and $v_i <_{\sigma'} v_j$ for $v_i \in I_i$ and $v_j \in I_j$ whenever $j > i$.

Plan

1 Introduction

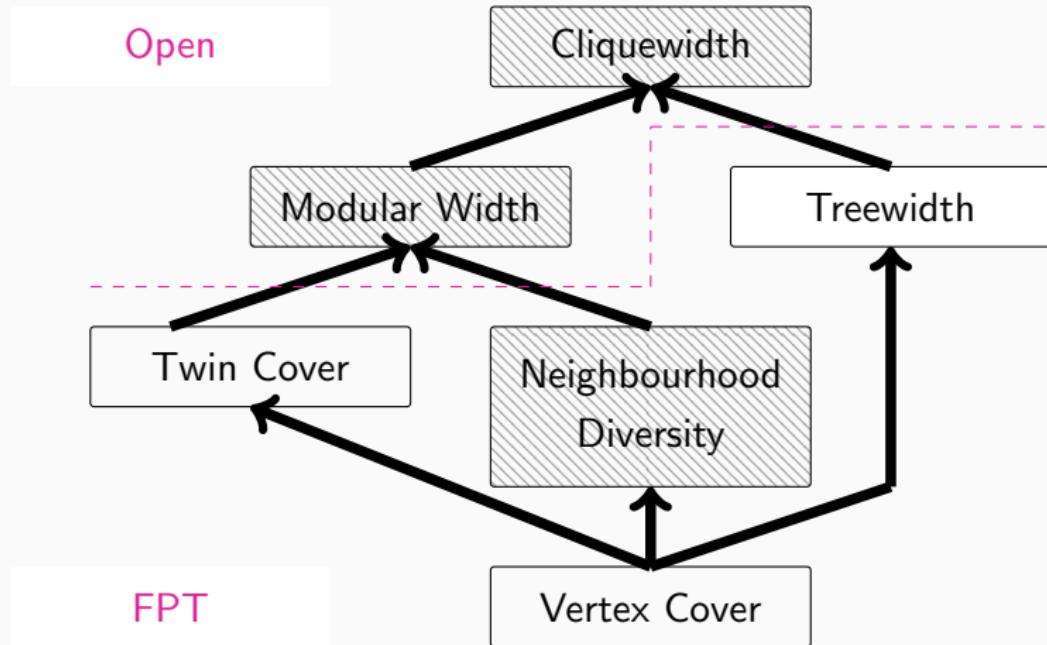
2 Bipartite Permutation Graphs

3 Threshold Graphs

4 Additional Results

5 Conclusion

Parameterized Results



An arrow from class A to class B indicates that class A is generalized by class B .

Bounded VC Graphs

Use the approach of Cygan et al. [CLP⁺14] for Cutwidth.

Theorem

Let G be a graph with vertex cover of size k . There is an algorithm to solve *Imbalance* in time $O(2^k n^{O(1)})$. Therefore there is a $O(2^{n/2} n^{O(1)})$ time algorithm for *Imbalance* on bipartite graphs.

Theorem

Imbalance parameterized by the size of the vertex cover does not admit a polynomial kernel, unless $NP \subseteq coNP/poly$.

Plan

1 Introduction

2 Bipartite Permutation Graphs

3 Threshold Graphs

4 Additional Results

5 Conclusion

Conclusion

- Future Work

- Imbalance's complexity on cographs? On trivially perfect graphs?
- Formalization of relationship to cutwidth?

Thank you.

Questions? Comments?

jgorzny@uwaterloo.ca

References i

- Therese Biedl, Timothy Chan, Yashar Ganjali, Mohammad Taghi Hajiaghayi, and David R Wood, *Balanced vertex-orderings of graphs*, Discrete Applied Mathematics **148** (2005), no. 1, 27–48.
- Jou-Ming Chang, Chin-Wen Ho, and Ming-Tat Ko, *Lexbfs-ordering in asteroidal triple-free graphs*, International Symposium on Algorithms and Computation, Springer, 1999, pp. 163–172.
- Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh, *On cutwidth parameterized by vertex cover*, Algorithmica **68** (2014), no. 4, 940–953.
- Pavol Hell and Jing Huang, *Interval bigraphs and circular arc graphs*, Journal of Graph Theory **46** (2004), no. 4, 313–327.

References ii

- Goos Kant, *Drawing planar graphs using the canonical ordering*, Algorithmica **16** (1996), no. 1, 4–32.
- Goos Kant and Xin He, *Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems*, Theoretical Computer Science **172** (1997), no. 1-2, 175–193.
- Achilleas Papakostas and Ioannis G Tollis, *Algorithms for area-efficient orthogonal drawings*, Computational Geometry **9** (1998), no. 1-2, 83–110.
- Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart, *Bipartite permutation graphs*, Discrete Applied Mathematics **18** (1987), no. 3, 279–292.

- David R Wood, *Optimal three-dimensional orthogonal graph drawing in the general position model*, Theoretical Computer Science **299** (2003), no. 1-3, 151–178.
- _____, *Minimising the number of bends and volume in 3-dimensional orthogonal graph drawings with a diagonal vertex layout*, Algorithmica **39** (2004), no. 3, 235–253.